
Simulink® Test™
User’s Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ User's Guide
© COPYRIGHT 2015–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2015 Online only New for Version 1.0 (Release 2015a)
September 2015 Online only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 2.0 (Release 2016a)
September 2016 Online only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)
March 2018 Online Only Revised for Version 2.4 (Release 2018a)
September 2018 Online Only Revised for Version 2.5 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)

Test Strategies
1

Link to Requirements . 1-2
Requirements Traceability Considerations 1-2
Establish Requirements Traceability for Testing 1-3

Test Harness
2

Test Harness and Model Relationship . 2-2
Test Harness Description . 2-2
Harness — Model Relationship for a Model Component 2-3
Harness — Model Relationship for a Top-Level Model 2-4
Resolving Parameters . 2-5
Test Harness Considerations . 2-5

Test Harness Construction for Specific Model Elements 2-7
Signal Conversion . 2-7
Function Calls . 2-8
Physical Signal Connections . 2-8
Bus Signals . 2-8
String Signals . 2-9
Non-Graphical Connections . 2-9
Export Function Models . 2-10
Execution Semantics . 2-11
Sample Time Specification . 2-11

Create Test Harnesses and Select Properties 2-13
Create a Test Harness . 2-13
Preview and Open Test Harnesses . 2-14
Change Test Harness Properties . 2-14

v

Contents

Considerations for Selecting Test Harness Properties 2-15
Harness Name . 2-15
Save Test Harnesses Externally . 2-15
Sources and Sinks . 2-16
Add scheduler for function-calls and rates / Generate function-

call signals using . 2-16
Enable Initialize, Reset, and Terminate ports 2-16
Add Separate Assessment Block . 2-17
Open Harness After Creation . 2-17
Create without compiling the model 2-17
Create scalar inputs . 2-17
Post-create callback method . 2-17
Rebuild harness on open . 2-18
Update Configuration Parameters and Model Workspace data on

rebuild . 2-18
Post-rebuild callback method . 2-18
Synchronization Mode . 2-18
Verification Modes . 2-19

Refine, Test, and Debug a Subsystem 2-20
Model and Requirements . 2-20
Create a Harness for the Controller 2-22
Inspect and Refine the Controller . 2-24
Add Test Inputs and Test the Controller 2-24
Debug the Controller . 2-25

Manage Test Harnesses . 2-28
Internal and External Test Harnesses 2-28
Manage External Test Harnesses . 2-28
Convert Between Internal and External Test Harnesses 2-30
Preview and Open Test Harnesses . 2-31
Find Test Cases Associated with a Test Harness 2-32
Export Test Harnesses to Separate Models 2-32
Clone and Export a Test Harness to a Separate Model 2-33
Delete Test Harnesses Programmatically 2-35
Move and Clone Test Harnesses . 2-37

Customize Test Harnesses . 2-40
Callback Function Definition and Harness Information 2-41
How to Display Harness Information struct Contents 2-43
Customize a Test Harness to Create Mixed Source Types . . . 2-43
Test Harness Callback Example . 2-45

vi Contents

Create Test Harnesses from Standalone Models 2-48
Test Harness Import Workflow . 2-48
Component Compatibility for Test Harness Import 2-49
. 2-50

Synchronize Changes Between Test Harness and Model 2-53
Set Synchronization for a New Test Harness 2-53
Change Synchronization of an Existing Test Harness 2-54
Synchronize Configuration Set and Model Workspace Data . . 2-54
Check for Unsynchronized Component Differences 2-55
Rebuild a Test Harness . 2-55
Push Changes from Test Harness to Model 2-56
Check Component and Push Parameter to Main Model 2-56

Test Library Blocks . 2-60
Library Testing Workflow . 2-60
Library and Linked Subsystem Test Harnesses 2-60
Edit Library Block from a Test Harness 2-62
Testing a Library and a Linked Block 2-62

Test Sequences and Assessments
3

Test Sequence Basics . 3-2
Test Sequence Hierarchy . 3-2
Transition Types . 3-2
Create a Basic Test Sequence . 3-4
Create Basic Test Assessments . 3-5

Assess Simulation and Compare Output Data 3-10
Overview . 3-10
Compare Simulation Data to Baseline Data or Another

Simulation . 3-11
Post-Process Results With a Custom Script 3-11
Run-Time Assessments . 3-12

Assess Model Simulation Using verify Statements 3-15
Activate verify Statements in the Test Assessment Block 3-15
Author verify Statements . 3-19

vii

Verify Multiple Conditions at a Time . 3-22

Test Sequence Editor . 3-24
Input, Output, and Data Management 3-24
Find and Replace . 3-25
Add and Delete Test Steps . 3-26
Automatic Syntax Correction . 3-26
Copy Test Steps . 3-26
Reorder Test Steps and Transitions . 3-27
Change Test Step Hierarchy . 3-27
Standard Test Step Sequences . 3-28
When Decomposition Sequences . 3-29

Actions and Transitions . 3-38
Transition Between Steps Using Temporal or Signal Conditions

. 3-38
Temporal Operators . 3-39
Transition Operators . 3-40
Use Messages in Test Sequences . 3-41

Signal Generation Functions . 3-47
Sinusoidal and Random Number Functions in Test Sequences

. 3-47
Using an External Function from a Test Sequence Block 3-49
Signal Generation Functions . 3-51

Programmatically Create a Test Sequence 3-55

Test Sequence and Assessment Syntax 3-60
Assessment Statements . 3-60
Temporal Operators . 3-62
Transition Operators . 3-63
Signal Generation Functions . 3-64
Logical Operators . 3-67
Relational Operators . 3-68

Debug a Test Sequence . 3-69
View Test Step Execution During Simulation 3-69
Set Breakpoints to Enable Debugging 3-69
View Data Values During Simulation 3-70
Step Through Simulation . 3-71

Test Downshift Points of a Transmission Controller 3-72

viii Contents

View Graphical Results From Model Verification Library . . . 3-79

Assess Temporal Logic Using Temporal Assessments 3-82
Create a Temporal Assessment . 3-82
Define Temporal Assessment Conditions 3-83
Evaluate the SUT . 3-86
Link Temporal Assessments to Requirements 3-87

Temporal Assessment Parameters . 3-88
Bounds Check Assessments . 3-88
Trigger-Response Assessments . 3-89
Custom Assessments . 3-91

Observers
4

Access Model Data Wirelessly by Using Observers 4-2
Observer Reference Block . 4-3
Connect Signals by Using an Observer Port Block 4-5
Simulate a System Model with an Observer Reference Block

. 4-7
Verify Heat Pump Temperature by Using Observers 4-7
Convert Verification Subsystem to an Observer Reference . . 4-11
Declutter a System Model by Using an Observer Reference

Block . 4-11

Test Harness Software- and Processor-in-the-Loop
5

SIL Verification for a Subsystem . 5-2
Create a SIL Verification Harness for a Controller 5-2
Configure and Simulate a SIL Verification Harness 5-4
Compare the SIL Block and Model Controller Outputs 5-5

Test Integrated Code . 5-7
Test Integrated C Code . 5-7
Test Code in S-Functions . 5-8

ix

S-Function Testing Example . 5-8

Simulink Test Manager Introduction
6

Functional Testing for Verification . 6-2
Test Authoring . 6-3
Test Generation . 6-3
Test Execution . 6-4
Reporting . 6-4

Test Manager Test Cases
7

Manage Test File Dependencies . 7-2
Package a Test File Using Simulink Projects 7-2
Find Test File Dependencies and Impact 7-4
Share a Test File with Dependencies . 7-8

Compare Model Output To Baseline Data 7-9
Create the Test Case . 7-9
Run the Test Case and View Results 7-10

Test a Simulation for Run-Time Errors 7-13
Configure the Model . 7-13
Create the Test Case . 7-14
Run the Test Case . 7-14
View Test Results . 7-15

Automatically Create a Set of Test Cases 7-16
Creating Test Cases from Model Elements 7-16
Generating Test Cases from a Model 7-16

Generate Tests for a Subsystem . 7-22
Generate the Subsystem Test Case . 7-22

Synchronize Tests . 7-24

x Contents

Run Tests Using External Data . 7-25
Mapping Status . 7-25
Create a Test Case from an Excel Spreadsheet 7-26
Import an Excel Spreadsheet into a Test Case 7-27
Add Microsoft Excel File as Input . 7-28
Importing Microsoft® Excel® Data 7-28
Add a MAT-File as an External Input 7-32

Test Case Input Data Files . 7-34
Generate an Excel Template . 7-34
Format Test Case Data in Excel . 7-38
Create a MAT-File for Input Data . 7-47

Capture Simulation Data in a Test Case 7-49
Add Logged Signals in the Test Manager 7-49
Capture Data from Local and Global Data Stores 7-51

Run Tests in Multiple Releases . 7-55
Considerations for Testing in Multiple Releases 7-55
Add Releases Using Test Manager Preferences 7-56
Run Baseline Tests in Multiple Releases 7-56
Run Equivalence Tests in Multiple Releases 7-57
Run Simulation Tests in Multiple Releases 7-58

Examine Test Failures and Modify Baselines 7-60
Examine Test Failure Signals and Update Baseline Test 7-60
Manually Update Signal Data in a Baseline 7-63

Create and Run Test Cases with Scripts 7-66
Create and Run a Baseline Test Case 7-66
Create and Run an Equivalence Test Case 7-67
Run a Test Case and Collect Coverage 7-68
Create and Run Test Case Iterations 7-69

Test Iterations . 7-71
Create Table Iterations . 7-71
Create Scripted Iterations . 7-75
Capture Baseline Data from Iterations 7-77
Sweep Through a Set of Parameters 7-80

Collect Coverage in Tests . 7-83
Enable and Collect Coverage for a Test File 7-83
Considerations for Collecting Coverage in Test Harnesses . . 7-86

xi

Run Tests Using Parallel Execution . 7-88
When Do Tests Benefit from Using Parallel Execution? 7-88
Use Parallel Execution . 7-88

Set Signal Tolerances . 7-90
Modify Criteria Tolerances . 7-90
Change Leading Tolerance in a Baseline Comparison Test . . . 7-90

Test Sections . 7-95
Select Releases for Testing . 7-95
Set Preferences to Display Test Sections 7-96
Select releases for simulation . 7-96
Tags . 7-96
Description . 7-96
Requirements . 7-97
System Under Test . 7-97
Parameter Overrides . 7-98
Callbacks . 7-99
Inputs . 7-100
Simulation Outputs . 7-101
Configuration Setting Overrides . 7-101
Simulation 1 and Simulation 2 . 7-101
Equivalence Criteria . 7-102
Baseline Criteria . 7-102
Logical and Temporal Assessments 7-103
Custom Criteria . 7-104
Iterations . 7-104
Coverage Settings . 7-105
Test File Options . 7-105

Increase Coverage by Generating Test Inputs 7-106
Overall Workflow . 7-106
Test Case Generation Example . 7-107

Process Test Results with Custom Scripts 7-111
MATLAB Testing Framework . 7-111
Define a Custom Criteria Script . 7-112
Reuse Custom Criteria and Debug Using Breakpoints 7-113
Assess the Damping Ratio of a Flutter Suppression System 7-115
Custom Criteria Programmatic Interface Example 7-120

Create, Store, and Open MATLAB Figures 7-122
Create a Custom Figure for a Test Case 7-122

xii Contents

Include Figures in a Report . 7-124

Test Models Using MATLAB Unit Test 7-125
Overall Workflow . 7-125
Considerations . 7-125
Comparison of Test Nomenclature 7-126
Basic Workflow Using MATLAB® Unit Test 7-127

Output Results for Continuous Integration Systems 7-129
Test a Model for Continuous Integration Systems 7-129
Model Coverage Results for Continuous Integration 7-132

Filter Test Execution and Results . 7-135
Add Tags . 7-135
Filter Tests and Results . 7-135
Run Filtered Tests . 7-135

Test Manager Results and Reports
8

View Test Case Results . 8-2
View Results Summary . 8-2
Visualize Test Case Simulation Output and Criteria 8-4

Export Test Results and Generate Reports 8-9
Export Results . 8-9
Create a Test Results Report . 8-10
Save Reporting Options with a Test File 8-10
Generate Reports Using Templates . 8-11
Generating a Test Results Report . 8-13

Customize Test Reports . 8-15
Inherit the Report Class . 8-15
Method Hierarchy . 8-15
Modify the Class . 8-17
Generate a Report Using the Custom Class 8-19

Append Code to a Test Report . 8-20

xiii

Results Sections . 8-23
Summary . 8-24
Test Requirements . 8-24
Iteration Settings . 8-25
Errors . 8-25
Logs . 8-25
Description . 8-25
Parameter Overrides . 8-25
Coverage Results . 8-25

Real-Time Testing
9

Test Models in Real Time . 9-2
Overall Workflow . 9-2
Real-Time Testing Considerations . 9-3
Complete Basic Model Testing . 9-3
Set up the Target Computer . 9-3
Configure the Model or Test Harness 9-4
Add Test Cases for Real-Time Testing 9-6
Assess Real-Time Execution Using verify Statements 9-11

Reuse Desktop Test Cases for Real-Time Testing 9-13
Convert Desktop Test Cases to Real-Time 9-13
Use External Data for Real-Time Tests 9-13
Example . 9-14

Verification and Validation
10

Test Model Against Requirements and Report Results 10-2
Requirements – Test Traceability Overview 10-2
Display the Requirements and Test Case 10-3
Link Requirements to Tests . 10-4
Run the Test . 10-5
Report the Results . 10-6

xiv Contents

Analyze a Model for Standards Compliance and Design Errors
. 10-8

Standards and Analysis Overview . 10-8
Check Model for Style Guideline Violations and Design Errors

. 10-8

Perform Functional Testing and Analyze Test Coverage . . . 10-11
Incrementally Increase Test Coverage Using Test Case

Generation . 10-11

Analyze Code and Test Software-in-the-Loop 10-15
Code Analysis and Testing Software-in-the-Loop Overview . 10-15
Analyze Code for Defects, Metrics, and MISRA C:2012 10-15

xv

Test Strategies

1

Link to Requirements

In this section...
“Requirements Traceability Considerations” on page 1-2
“Establish Requirements Traceability for Testing” on page 1-3

Since requirements specify behavior in response to particular conditions, you can develop
test inputs, expected outputs, and assessments from the model requirements.

Requirements Traceability Considerations
Consider the following limitations working with requirements links in test harnesses:

• Some blocks and subsystems are recreated during test harness rebuild operations.
Requirements linking is not supported for these blocks and subsystems in a test
harness:

• Conversion subsystems between the component under test and the sources or sinks
• Test Sequence blocks that schedule function calls

1 Test Strategies

1-2

• Blocks that drive control input signals to the component under test
• Blocks that drive Goto or From blocks that pass component under test signals
• Data Store Read and Data Store Write blocks

• If you use external requirements storage, performing the following operations requires
reestablishing requirements links to model objects inside test harnesses:

• Cut/paste or copy/paste a subsystem with a test harness
• Clone a test harness
• Move a test harness from a linked block to the library block

Establish Requirements Traceability for Testing
If you have a Simulink Test and a Simulink Requirements™ license, you can link
requirements to test harnesses, test sequences, and test cases. Before adding links,
review “Supported Requirements Document Types” (Simulink Requirements).

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately
synchronize between the test harness and the main model. Other changes to the
component under test, such as adding a block, synchronize when you close the test
harness. If you add a block to the component under test, close and reopen the harness to
update the main model before adding a requirement link.

To view items with requirements links, select Analysis > Requirements > Highlight
Model.

Requirements Traceability for Test Sequences

In test sequences, you can link to test steps. To create a link, first find the model item,
test case, or location in the document you want to link to. Right-click the test step, select
Requirements, and add a link or open the link editor.

To highlight or unhighlight test steps that have requirements links, toggle the

requirements links highlighting button in the Test Sequence Editor toolstrip.
Highlighting test steps also highlights the model block diagram.

 Link to Requirements

1-3

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to
distinguish which blocks and test steps apply to it. To link test steps or test harness
blocks to test cases,

1 Open the test case in the Test Manager.
2 Highlight the test case in the test browser.
3 Right-click the block or test step, and select Requirements > Link to Current Test

Case.

Requirements Traceability Example

This example demonstrates adding requirements links to a test harness and test
sequence. The model is a component of an autopilot roll control system. This example
requires Simulink Test and Simulink Requirements.

1 Open the test file, the model, and the harness.

open AutopilotTestFile.mldatx,
open_system RollAutopilotMdlRef,
sltest.harness.open('RollAutopilotMdlRef/Roll Reference',...
'RollReference_Requirement1_3')

2 In the test harness, select Analysis > Requirements > Highlight Model.

The test harness highlights the Test Sequence block, component under test, and Test
Assessment block.

1 Test Strategies

1-4

3 Add traceability to the Discrete Derivative block.

a Right-click the Discrete Derivative block and select Requirements > Open
Outgoing Links dialog.

b In the Requirements tab, click New.
c Enter the following to establish the link:

• Description: DD link
• Document type: Text file
• Document: RollAutopilotRequirements.txt
• Location: 1.3 Roll Hold Reference

d Click OK. The Discrete Derivative block highlights.

 Link to Requirements

1-5

4 To trace to the requirements document, right-click the Discrete Derivative block, and
select Requirements > DD Link. The requirements document opens in the editor
and highlights the linked text.

5 Open the Test Sequence block. Add a requirements link that links the
InitializeTest step to the test case.

a In the Test Manager, highlight Requirement 1.3 Test in the test browser.
b Right-click the InitializeTest step in the Test Sequence Editor. Select

Requirements > Link to Current Test Case.

When the requirements link is added, the Test Sequence Editor highlights the
step.

1 Test Strategies

1-6

See Also

Related Examples
• “Requirements-Based Testing for Model Development”

 See Also

1-7

Test Harness

• “Test Harness and Model Relationship” on page 2-2
• “Test Harness Construction for Specific Model Elements” on page 2-7
• “Create Test Harnesses and Select Properties” on page 2-13
• “Refine, Test, and Debug a Subsystem” on page 2-20
• “Manage Test Harnesses” on page 2-28
• “Customize Test Harnesses” on page 2-40
• “Create Test Harnesses from Standalone Models” on page 2-48
• “Synchronize Changes Between Test Harness and Model” on page 2-53
• “Test Library Blocks” on page 2-60

2

Test Harness and Model Relationship
In this section...
“Test Harness Description” on page 2-2
“Harness — Model Relationship for a Model Component” on page 2-3
“Harness — Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5
“Test Harness Considerations” on page 2-5

Test Harness Description
A test harness is a model block diagram that you can use to test, edit, or debug a
Simulink model. In the main model, you associate a harness with a model component or
the top-level model. The test harness contains a separate model workspace and
configuration set. The test harness is associated with the main model and can be accessed
via the model canvas.

You build the test harness model around the component under test, which links the
harness to the main model. If you edit the component under test in the harness, the main
model updates when you close the harness. You can generate a test harness for:

• A model component, such as a subsystem, library block, or Model block. The test
harness isolates the component in a separate simulation environment.

• A top-level model. The component under test is a Model block referencing the main
model.

2 Test Harness

2-2

Harness — Model Relationship for a Model Component
When you associate a test harness with a model component, the harness model
workspace contains copies of parameters associated with the component.

This example shows a test harness for a component that contains a Gain block. The
harness model workspace contains a copy of the parameter g because g defines a part of
the component.

The parameter h is the gain of a gain block in the harness, outside the component under
test (CUT). h exists only in the harness model workspace.

 Test Harness and Model Relationship

2-3

Harness — Model Relationship for a Top-Level Model
When you associate a harness with the top level of the main model, the harness model
workspace does not contain copies of parameters relevant to the component. The
component under test is a Model block referencing the main model, and parameters
remain in the main model workspace. In this example, the component under test
references the main model, and the variable g exists in the main model workspace. The
variable h is the value of the Gain block in the harness. It exists only in the harness model
workspace.

2 Test Harness

2-4

Resolving Parameters
Parameters in the test harness resolve to the most local workspace. Parameters resolve to
the harness model workspace, then the system model workspace, then the base MATLAB®

workspace.

Test Harness Considerations
• You can open only one test harness at a time per main model.

 Test Harness and Model Relationship

2-5

• Do not comment out the component under test in the test harness. Commenting out
the component under test can cause unexpected behavior.

• If a subsystem has a test harness, you cannot expand the subsystem contents into the
model containing the subsystem. Delete the test harness(es) before expanding the
subsystem. For more information see “Subsystem Expansion” (Simulink).

• Test harnesses are not supported for blocks underneath a Stateflow® object.
• Upgrade advisor and XML differencing are not supported for test harness models.
• A test harness with a Signal Builder block source does not support:

• Frame-based signals
• Complex signals
• Variable-dimension signals

• For a test harness with a Test Sequence block source, all inputs to the component
under test must operate with the same sample time.

See Also

More About
• “Capabilities of Model Components” (Simulink)

2 Test Harness

2-6

Test Harness Construction for Specific Model Elements
A test harness consists of one or more source blocks that drive the component under test,
which drives one or more sink blocks. Test harness construction configures signal
attributes, function calls, data stores, and execution semantics. When possible, the test
harness matches signal attributes at the sources, sinks, and component interface. For
more information on selecting sources and sinks, see “Sources and Sinks” on page 2-16.

Signal Conversion
Signal conversion subsystems adapt the signal interface of the source and sink blocks to
the graphical interface of the component. The graphical interface of the component
includes input signals, output signals, and action, trigger, or enable inputs. The test
harness compiles the main model to determine signal attributes:

• Data type
• Dimensions
• Complexity

Signal attributes are adapted to the sources during harness construction in one of two
ways:

1 Source blocks that can generate signals with the compiled attributes are configured
to do so.

2 If a source block cannot generate signals with the compiled attributes, signal
attribute blocks in the signal conversion subsystem adapt the output of the source

 Test Harness Construction for Specific Model Elements

2-7

blocks. Signal attribute blocks include Reshape, Rate Transition and Data Type
Conversion blocks.

By default, signal conversion subsystems are locked from editing.

Function Calls
Function Call Drivers

If the component under test has function call inputs, a Test Sequence block source
generates function call inputs to the component, even if you select a different source
during harness creation. To override this behavior and connect function call inputs to
your selected source type, create the test harness with the sltest.harness.create
function, and set 'DriveFcnCallWithTestSequence' to false. For example:

sltest.harness.create('Model/FcnCallSubsystem','Source','From File',...
’DriveFcnCallWithTestSequence',false)

Function Call Outputs

Function call outputs of the component under test connect to Terminator blocks.

Physical Signal Connections
Components that accept or output physical signals are supported during harness
construction, but sources and sinks are not generated. You can add physical modeling
blocks to the test harness after construction.

Bus Signals
Test harnesses configuration for bus inputs and outputs depends on the bus connection
ability of the source or sink blocks:

1 Sources and sinks that can accept a bus signal are directly connected to the
component without modification.

2 If a source cannot output a bus signal, bus signals are automatically constructed from
individual bus elements in the signal conversion subsystem.

3 If a sink cannot accept a bus signal, bus signal elements are expanded from the bus
signal in the signal conversion subsystem.

2 Test Harness

2-8

String Signals
If the component under test uses string data inputs, and your test harness source does
not support string data, string inputs are connected to Ground blocks.

String Inputs

Harness Source Selection Source Block for String Inputs
Inport Inport
Signal Builder Ground
Signal Editor Ground
From Workspace Ground
From File Ground
Test Sequence Ground
Constant String Constant (individual string input)

Ground (bus containing string)
Ground Ground

If the component under test uses string data outputs, and your test harness sink does not
support string data, string outputs are connected to Terminator blocks.

String Outputs

Harness Sink Selection Sink Block for String Outputs
Outport Outport
Scope Terminator
To Workspace Terminator
To File Terminator
Terminator Terminator

Non-Graphical Connections
In addition to the graphical interface of a component, Simulink supports several non-
graphical connections. Test harness construction also supports non-graphical
connections.

 Test Harness Construction for Specific Model Elements

2-9

Goto–From Connections

Goto-From block pairs that cross the component boundary are considered component
inputs or outputs.

• A From block without a corresponding Goto block in the component is considered a
component input signal. The test harness includes a source block with a corresponding
Goto block.

• A Goto block without the corresponding From block in the component is considered a
component output signal. The test harness includes a sink block with a corresponding
From block.

Data Store Memory

Data Store Read and Data Store Write blocks require a complete data store definition in
the test harness.

• If a Data Store Read or Data Store Write block lacks a corresponding Data Store
Memory block in the component, the test harness adds a Data Store Memory block.

• For a component containing only Data Store Read blocks, the test harness adds a
source block driving a Data Store Write block.

• For a component containing only Data Store Write blocks, the test harness adds a Data
Store Read block driving a sink block.

If global data store memory read or write usage cannot be determined, then Data Store
Read and Data Store Write blocks are not included in the test harness.

Simulink Function Definitions

If the component calls a Simulink Function that is not defined in the component, the test
harness adds a stub Simulink Function block matching the function call signature.

Export Function Models
Test harnesses contain a function-call scheduler for components that use the export-
function modeling style. The scheduler is a Test Sequence block that contains prototype
calls to the functions in your model.

The scheduler Test Sequence block includes a test step containing:

2 Test Harness

2-10

• A catalog of globally scoped Simulink Function blocks in the component.
• A list of function-call triggers accessible at the component interface.

Harness construction honors periodic function-call triggers with appropriate decimation
of the function-call event in the Test Sequence block.

Test harnesses include Initialize, Terminate, and Reset steps for models that
contain Initialize, Terminate, and Reset event subsystems. You can include
Initialize, Terminate, and Reset steps for other export-function models using the
'ScheduleInitTermReset' property of sltest.harness.create.

Execution Semantics
The execution behavior of a component depends on factors such as computed sample
times, solver settings, model configuration, and parameter settings. Execution behavior
also depends on run-time events such as function-call triggers and asynchronous events.
To handle these execution semantics, test harness construction:

1 Copies configuration parameter settings from the main model into the test harness.
2 Copies required parameter definitions from the main model workspace into the test

harness model workspace.
3 Copies data dictionary settings from the main model into the test harness.
4 Honors a limited subset of sample time settings using explicit source block

specifications and Rate Transition blocks.

Other factors, such as additional blocks in the harness and solver heuristics, can cause
test harness execution to differ from the main model. The graphical and compiled
interface of the component takes precedence over other execution semantics.

Sample Time Specification
Simulink supports an array of sample times, including types that are derived during
model compilation. Test harness construction supports periodic discrete, continuous, and
fixed-in-minor-step sample times with these considerations:

• Source blocks that support the desired rate are configured to do so, and the signal
conversion subsystem contains a Signal Specification block with the rate specification.

• Test harness construction does not configure source blocks that cannot support the
desired rate.

 Test Harness Construction for Specific Model Elements

2-11

• If the desired rate is periodic discrete or fixed-in-minor-step, the test harness
contains a Rate Transition block in the signal conversion subsystem.

• If the desired rate is continuous, the execution semantics are determined by the
solver. The signal conversion subsystem does not contain a Rate Transition block.

Other sample time specifications are ignored during test harness construction. In
those cases, solver settings determine execution behavior.

See Also
“Create Test Harnesses and Select Properties” on page 2-13

2 Test Harness

2-12

Create Test Harnesses and Select Properties
In this section...
“Create a Test Harness” on page 2-13
“Preview and Open Test Harnesses” on page 2-14
“Change Test Harness Properties” on page 2-14
“Considerations for Selecting Test Harness Properties” on page 2-15
“Harness Name” on page 2-15
“Save Test Harnesses Externally” on page 2-15
“Sources and Sinks” on page 2-16
“Add scheduler for function-calls and rates / Generate function-call signals using” on
page 2-16
“Enable Initialize, Reset, and Terminate ports” on page 2-16
“Add Separate Assessment Block” on page 2-17
“Open Harness After Creation” on page 2-17
“Create without compiling the model” on page 2-17
“Create scalar inputs” on page 2-17
“Post-create callback method” on page 2-17
“Rebuild harness on open” on page 2-18
“Update Configuration Parameters and Model Workspace data on rebuild” on page 2-18
“Post-rebuild callback method” on page 2-18
“Synchronization Mode” on page 2-18
“Verification Modes” on page 2-19

Create a Test Harness
To create a test harness for a top-level model, select Analysis > Test Harness > Create
for Model. To create a test harness for a subsystem, select the subsystem and select
Analysis > Test Harness > Create for <subsystem name>. Set test harness
properties using the Create Test Harness dialog box.

 Create Test Harnesses and Select Properties

2-13

Preview and Open Test Harnesses
When a model component has a test harness, a badge appears in the lower right of the
block. To view the test harnesses, click the badge. To open a test harness, click a tile.

To view test harnesses for a model block diagram, click the pullout icon in the model
canvas. To open a test harness, click a tile.

Change Test Harness Properties

To change properties of an open test harness, click the badge in the test harness
block diagram and click Test harness properties to open the harness properties dialog
box.

To change properties of test harnesses from the main model, click the Harness
operations icon from the test harness preview.

2 Test Harness

2-14

Considerations for Selecting Test Harness Properties
Before selecting test harness properties, consider the following:

• What data source you want to use for your test case input
• How you want to view or store test output
• Whether you want to copy parameters and workspaces from the main model to the

harness
• Whether you plan to edit the component under test
• How you want to synchronize changes between the test harness and model

Except for sources and sinks, you can change harness properties later using the harness
properties dialog box. To change sources and sinks after harness creation, manually
remove the blocks from the test harness and replace them with new sources and sinks.

Harness Name
Test harnesses must use valid MATLAB filenames.

Save Test Harnesses Externally
This option controls how the model stores test harnesses. A model stores all its test
harnesses either internally or externally. If a model already has test harnesses, this item
states the harness storage type as Harnesses saved <internally|externally>.

• When cleared, the model saves test harnesses as part of the model SLX file.

 Create Test Harnesses and Select Properties

2-15

• When selected, the model saves test harnesses in separate SLX files to the current
working folder, and adds a harness information XML file to the model folder. The
harness information file must remain in the same folder as the model.

See “Manage Test Harnesses” on page 2-28.

Sources and Sinks
In the Create Test Harness dialog box, under Sources and Sinks, select the source and
sink from the respective menus. The menus provide common sources and sinks.

You can also use source and sink blocks from the Simulink Sources or Sinks library. Select
Custom source or sink, and enter the path to the block. For example:

simulink/Sources/Sine Wave

simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

Add scheduler for function-calls and rates / Generate
function-call signals using
The title of this option depends on whether the component under test is a subsystem or a
model. To include a scheduler block in your test harness, select a block from the drop-
down list.

• Add scheduler for function-calls and rates: For a model, you can use the block to
to call functions and set sample times for model inputs and outputs.

• Generate function-call signals using: For a subsystem, you can use the block to
call functions in the subsystem.

Enable Initialize, Reset, and Terminate ports
Selecting this option exposes initialize, terminate, or reset function-call ports in the
component under test and connects the scheduler block to the ports.

This option appears when you create a test harness for a top-level model and select a
block for the Add scheduler for function-calls and rates option.

2 Test Harness

2-16

Add Separate Assessment Block
Select Add separate assessment block to include a separate Test Assessment block in
the test harness.

A Test Assessment block is a separate Test Sequence block configured with properties
commonly used for verifying the component under test. For more information, see “Assess
Simulation and Compare Output Data” on page 3-10 and “Assess Model Simulation
Using verify Statements” on page 3-15.

Open Harness After Creation
Clear Open Harness After Creation to create the test harness without opening it. This
can be useful creating multiple test harnesses in succession.

Create without compiling the model
Creating a test harness without compiling the model can be useful if you are prototyping
a design that cannot yet compile. When you create a test harness without compiling the
main model:

• Parameters are not copied to the test harness workspace.
• The main model configuration is not copied to the test harness.
• The test harness does not contain conversion subsystems.

You may need to add blocks such as signal conversion blocks to the test harness. You can
rebuild the harness when you are ready to compile the main model. For more information,
see “Synchronize Changes Between Test Harness and Model” on page 2-53.

Create scalar inputs
When you select this property, the test harness creates scalar inputs for multidimensional
signals. The individual scalar inputs are reshaped to match the dimension of the input
signals to the component under test. This option applies to test harnesses with Inport,
Constant, Signal Builder, From Workspace, or From File source blocks.

Post-create callback method
You can customize your test harness using a post-create callback. A post-create callback
is a function that runs after the harness is created. For example, your callback can set up

 Create Test Harnesses and Select Properties

2-17

signal logging, add custom blocks, or change the harness simulation times. For more
information, see “Customize Test Harnesses” on page 2-40.

Rebuild harness on open
When you select this property, the test harness rebuilds every time you open it. For
details on the rebuild process, see “Synchronize Changes Between Test Harness and
Model” on page 2-53.

Update Configuration Parameters and Model Workspace data
on rebuild
When you select this property, configuration parameters and model workspace data
update when you rebuild the harness. For details on the rebuild process, see
“Synchronize Changes Between Test Harness and Model” on page 2-53.

Post-rebuild callback method
You can customize your test harness using a post-rebuild callback. A post-rebuild callback
is a function that runs after the harness is rebuilt. For example, your callback can set up
signal logging, add custom blocks, or change the harness simulation times. For more
information, see “Customize Test Harnesses” on page 2-40.

Synchronization Mode
Synchronization mode controls when changes to the component under test are synced to
the main model, and when changes to the harness owner are synced into a test harness.

• On harness open — The component in the test harness is updated when the harness
opens. Synchronizing on harness open is useful if you update the design in the main
model.

• On harness close — The component in the main model is updated when the harness
closes. Synchronizing on harness close is useful if you make design changes in the test
harness. Avoid synchronizing on harness close if you want to prevent inadvertent
changes to the component in the main model.

• During push — Synchronization occurs manually, by selecting Analysis > Test
Harness > Push Component and Parameters to Main Model.

2 Test Harness

2-18

• During rebuild — Synchronization occurs manually, by selecting Analysis > Test
Harness > Rebuild Harness from Main Model.

Verification Modes
The test harness verification mode determines the type of block generated in the test
harness.

• Normal: A Simulink block diagram.
• Software-in-the-Loop (SIL): The component under test references generated

code, operating as software-in-the-loop. Requires Embedded Coder®.
• Processor-in-the-Loop (PIL): The component under test references generated

code for a specific processor instruction set, operating as processor-in-the-loop.
Requires Embedded Coder.

Note Keep the SIL or PIL code in the test harness synchronized with the latest
component design. If you select SIL or PIL verification mode without selecting Rebuild
harness on open, your SIL or PIL block code might not reflect recent updates to the
main model design. Regenerate code for the SIL or PIL block in the test harness by
selecting Analysis > Test Harness > Rebuild Harness from Main Model.

See Also
Test Sequence | “Synchronize Changes Between Test Harness and Model” on page 2-53

 See Also

2-19

Refine, Test, and Debug a Subsystem
In this section...
“Model and Requirements” on page 2-20
“Create a Harness for the Controller” on page 2-22
“Inspect and Refine the Controller” on page 2-24
“Add Test Inputs and Test the Controller” on page 2-24
“Debug the Controller” on page 2-25

Test harnesses provide a development and testing environment that leaves the main
model design intact. You can test a functional unit of your model in isolation without
altering the main model. This example demonstrates refining and testing a controller
subsystem using a test harness. The main model is a controller-plant model of an air
conditioning/heat pump unit. The controller must operate according to several simple
requirements.

Model and Requirements
1 Access the model. Enter

cd(fullfile(docroot,'toolbox','sltest','examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB path:

sltestHeatpumpExample.slx
sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

2 Test Harness

2-20

In the example model:

• The controller accepts the room temperature and the set temperature inputs.
• The controller output is a bus with signals controlling the fan, heat pump, and the

direction of the heat pump (heat or cool).
• The plant accepts the control bus. The heat pump and the fan signals are Boolean, and

the heat pump direction is specified by +1 for cooling and -1 for heating.

 Refine, Test, and Debug a Subsystem

2-21

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

Temperature condition System
state

Fan
command

Pump
command

Pump
directio

n
|Troom - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom - Tset| <
DeltaT_pump

fan only 1 0 0

|Troom - Tset| >= DeltaT_pump
and Tset < Troom

cooling 1 1 -1

|Troom - Tset| >= DeltaT_pump
and Tset > Troom

heating 1 1 1

Create a Harness for the Controller
1 Right-click the Controller subsystem and select Test Harness > Create for

‘Controller’.
2 Set the harness properties:

In the Basic Properties tab:

• Name: devel_harness_1
• Clear Save test harness externally
• Sources and Sinks: None and Scope
• Clear Add separate assessment block
• Select Open harness after creation

2 Test Harness

2-22

3 Click OK to create the test harness.

 Refine, Test, and Debug a Subsystem

2-23

Inspect and Refine the Controller
1 In the test harness, double-click Controller to open the subsystem.
2 Connect the chart to the Inport blocks.

3 In the test harness, click the Save button to save the test harness and model.

Add Test Inputs and Test the Controller
1 Navigate to the top level of devel_harness_1.
2 Create a test input for the harness with a constant Tset and a time-varying Troom.

Connect a Constant block to the Tset input and set the value to 75.
3 Add a Sine Wave block to the harness model to simulate a temperature signal.

Connect the Sine Wave block to the conversion subsystem input Troom_in.
4 Double-click the Sine Wave block and set the parameters:

• Amplitude: 15
• Bias: 75
• Frequency: 2*pi/3600
• Phase (rad): 0
• Sample time: 1

2 Test Harness

2-24

• Select Interpret vector parameters as 1–D.
5 Connect Inport blocks to the Data Store Write inputs.

6 In the Configuration Parameters dialog box, in the Data Import/Export pane, select
Input and enter u. u is an existing structure in the MATLAB base workspace.

7 In the Solver pane, set Stop time to 3600.
8 Open the scope in the test harness and change the layout to show three plots.
9 Click Run to simulate.

Debug the Controller
1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |

Troom - Tset| < DeltaT_fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan_cmd control output must be
changed for IDLE.

 Refine, Test, and Debug a Subsystem

2-25

2 In the harness model, open the Controller subsystem.
3 Open controller_chart.
4 In the IDLE state, fan_cmd is set to return 1. Change fan_cmd to return 0. IDLE is

now:

IDLE
entry:
fan_cmd = 0;
 pump_cmd = 0;
 pump_dir = 0;

5 Simulate the harness model again and observe the outputs.

2 Test Harness

2-26

6 fan_cmd now meets the requirement to equal 0 at IDLE.

See Also

Related Examples
• “Test Downshift Points of a Transmission Controller” on page 3-72

 See Also

2-27

Manage Test Harnesses
In this section...
“Internal and External Test Harnesses” on page 2-28
“Manage External Test Harnesses” on page 2-28
“Convert Between Internal and External Test Harnesses” on page 2-30
“Preview and Open Test Harnesses” on page 2-31
“Find Test Cases Associated with a Test Harness” on page 2-32
“Export Test Harnesses to Separate Models” on page 2-32
“Clone and Export a Test Harness to a Separate Model” on page 2-33
“Delete Test Harnesses Programmatically” on page 2-35
“Move and Clone Test Harnesses” on page 2-37

Internal and External Test Harnesses
You can save test harnesses internally as part of your model SLX file, or externally in
separate SLX files. A model stores all test harnesses either internally or externally; it is
not possible to use both types of harness storage in one model. You select internal or
external test harness storage when you create the first test harness. If your model already
has test harnesses, you can convert between the harness storage types.

If you store your model in a change control system, consider using external test
harnesses. External test harnesses enable you to create or change a harness without
changing the model file. If you plan to share your model often, consider using internal test
harnesses to simplify file management. Creating or changing an internal test harness
changes your model SLX file. Both internal and external test harnesses offer the same
synchronization, push, rebuild, and badge interface functionality.

See “Create Test Harnesses and Select Properties” on page 2-13.

Manage External Test Harnesses
Harnesses stored externally use a separate SLX file for each harness, and a
<modelName>_harnessInfo.xml file containing metadata linking the model and the
harnesses. Changing test harnesses can change the harnessInfo.xml file.

2 Test Harness

2-28

Follow these guidelines for external test harnesses:

Warning Do not delete the harnessInfo.xml file. Deleting the harnessInfo.xml file
terminates the relationship between the model and harnesses, which cannot be
regenerated from the model.

• The harnessInfo.xml file must be writable to save changes to the test harness or
the main model.

• Keep the harnessInfo.xml file in the same folder as the main model. If the
harnessInfo.xml file and the model are in separate folders, the main model opens
but does not present the test harnesses.

• Directories containing test harness SLX files must be on the MATLAB path.
• If you convert internal test harnesses to external test harnesses, the new SLX files

save to the current working folder.
• If you convert external test harnesses to internal test harnesses, the external SLX files

can be anywhere on the MATLAB path.
• If your model uses external test harnesses, only create a copy of your model using File

> Save As from the model menu. Using File > Save As copies external test harnesses
to the destination folder of the new model and keeps the harness information current.

Copying the model file on disk will not copy external harnesses associated with the
model.

• Only change or delete test harnesses using the Simulink UI or commands:

• To delete test harnesses, use the thumbnail UI or the sltest.harness.delete
command.

• To rename test harnesses, use the harness properties UI or the
sltest.harness.set command.

• To make a copy of an externally saved test harness, use the
sltest.harness.clone command or save the test harness to a new name using
File > Save As.

Deleting or renaming harness files outside of Simulink causes an inaccurate
harnessInfo.xml file and problems loading test harnesses.

 Manage Test Harnesses

2-29

Convert Between Internal and External Test Harnesses
You can change how your model stores test harnesses at different phases of your model
lifecycle. For example:

• Develop your model using internal test harnesses so that you can more easily share
the model for review. When you complete your design and place the model under
change control, convert to external harnesses.

• Use the change-controlled model as the starting point for a new design. Test the
existing model with external harnesses to avoid modifying it. Then, create a copy of
the existing model. Convert to internal harnesses for the new development phase.

To change the test harness storage to external (or internal):

1 Navigate to the top of the main model.
2 Select Analysis > Test Harness > Convert To External (Internal) Harnesses.
3 A dialog box provides information on the conversion procedure and the affected test

harnesses. Click Yes to continue.

The harnesses are converted.
4 The conversion to external test harnesses creates an SLX file for each test harness

and a harness information XML file <modelName>_harnessInfo.xml.

2 Test Harness

2-30

Inversely, conversion to internal test harnesses moves the test harness SLX files and
the harnessInfo.xml file.

Preview and Open Test Harnesses
When a model component has a test harness, a badge appears in the lower right of the
block. To view the test harnesses, click the badge. To open a test harness, click a tile.

To view test harnesses for a model block diagram, click the pullout icon in the model
canvas. To open a test harness, click a tile.

 Manage Test Harnesses

2-31

Find Test Cases Associated with a Test Harness

To list open test cases that refer to the test harness, click the badge in the test
harness canvas. You can click a test case name and navigate to the test case in the Test
Manager.

Export Test Harnesses to Separate Models
You can export test harnesses to separate models, which is useful for archiving test
harnesses or sharing a test harness design without sharing the model.

• To export an individual test harness:

2 Test Harness

2-32

1 From the test harness menu, select Analysis > Test Harness > Detach and
Export Harness.

2 A dialog box confirms the harness export. Click OK.
3 Enter a file name for the separate model.

The harness converts to a separate model. Converting removes the harness from
the main model and breaks the relationship to the main model.

• To export all harnesses in a model:

1 Navigate to the top level of the test harness.
2 Select no blocks.
3 From the model menu, select Analysis > Test Harness > Detach and Export

Harnesses.
4 A dialog box confirms the harness export. Click OK.

The harnesses convert to separate models. Converting removes the harnesses
from the main model and breaks the relationships to the main model.

See sltest.harness.export.

Clone and Export a Test Harness to a Separate Model
This example demonstrates cloning an existing test harness and exporting the cloned
harness to a separate model. This can be useful if you want to create a copy of a test
harness as a separate model, but leave the test harness associated with the model
component.

High-level Workflow

1 If you don't know the exact properties of the test harness you want to clone, get them
using sltest.harness.find. You need the harness owner ID and the harness name.

2 Clone the test harness using sltest.harness.clone.
3 Export the test harness to a separate model using sltest.harness.export. Note that

there is no association between the exported model and the original model. The
exported model stands alone.

 Manage Test Harnesses

2-33

Open the Model and Save a Local Copy
model = 'sltestTestSequenceExample';
open_system(model)

Save the local copy in a writable location on the MATLAB path.

Get the Properties of the Source Test Harness
properties = sltest.harness.find([model '/shift_controller'])

properties =

 struct with fields:

 model: 'sltestTestSequenceExample'
 name: 'controller_harness'
 description: ''
 type: 'Testing'
 ownerHandle: 10.0167
 ownerFullPath: 'sltestTestSequenceExample/shift_controller'
 ownerType: 'Simulink.SubSystem'
 isOpen: 0
 canBeOpened: 1

2 Test Harness

2-34

 lockMode: 0
 verificationMode: 0
 saveExternally: 0
 rebuildOnOpen: 0
 rebuildModelData: 0
 postRebuildCallback: ''
 graphical: 0
 origSrc: 'Test Sequence'
 origSink: 'Test Assessment'
 synchronizationMode: 0

Clone the Test Harness

Clone the test harness using sltest.harness.clone, the ownerFullPath and the name
fields of the harness properties structure.

sltest.harness.clone(properties.ownerFullPath,properties.name,'ControllerHarness2')

Save the Model

Before exporting the harness, save changes to the model.

save_system(model)

Export the Test Harness to a Separate Model

Export the test harness using sltest.harness.export. The exported model name is
ControllerTestModel.

sltest.harness.export([model '/shift_controller'],'ControllerHarness2',...
 'Name','ControllerTestModel')

clear('model')
clear('properties')
close_system('sltestTestSequenceExample',0)

Delete Test Harnesses Programmatically
This example shows how to delete test harnesses programmatically. Deleting with % the
programmatic interface can be useful when your model has multiple test harnesses at
different hierarchy levels. This example demonstrates creating four test harnesses, then
deleting them.

 Manage Test Harnesses

2-35

1. Open the model

open_system('sltestCar');

2. Create two harnesses for the transmission subsystem, and two harnesses for the
transmission ratio subsystem.

sltest.harness.create('sltestCar/transmission');
sltest.harness.create('sltestCar/transmission');
sltest.harness.create('sltestCar/transmission/transmission ratio');
sltest.harness.create('sltestCar/transmission/transmission ratio');

3. Find the harnesses in the model.

test_harness_list = sltest.harness.find('sltestCar')

test_harness_list =

 1x5 struct array with fields:

 model
 name

2 Test Harness

2-36

 description
 type
 ownerHandle
 ownerFullPath
 ownerType
 isOpen
 canBeOpened
 lockMode
 verificationMode
 saveExternally
 rebuildOnOpen
 rebuildModelData
 postRebuildCallback
 graphical
 origSrc
 origSink
 synchronizationMode

4. Delete the harnesses.

for k = 1:length(test_harness_list)
 sltest.harness.delete(test_harness_list(k).ownerFullPath,...
 test_harness_list(k).name)
end

close_system('sltestCar',0);

Move and Clone Test Harnesses
Simulink Test gives you the ability to move/clone test harnesses from a source owner to a
destination owner without having to compile the model. You can move or clone:

• Subsystem harnesses across subsystems. The destination subsystem could also be in a
different model.

• Harnesses for library components across libraries.

To move or clone harnesses, right-click the Simulink canvas and select Test Harness >
Manage Test Harnesses. The Manage Test Harness dialog box opens and lists the test
harnesses associated with the subsystem/block specified in Filter by harness owner.
Click Actions to access the Move and Clone options.

 Manage Test Harnesses

2-37

2 Test Harness

2-38

Select the destination path and name your test harness.

See Also
Functions
sltest.harness.clone | sltest.harness.create | sltest.harness.delete |
sltest.harness.export | sltest.harness.find | sltest.harness.load |
sltest.harness.move | sltest.harness.open

 See Also

2-39

Customize Test Harnesses
In this section...
“Callback Function Definition and Harness Information” on page 2-41
“How to Display Harness Information struct Contents” on page 2-43
“Customize a Test Harness to Create Mixed Source Types” on page 2-43
“Test Harness Callback Example” on page 2-45

You can customize a test harness by using a function that runs after creating or
rebuilding the test harness. In the function, script the commands to customize your test
harness. For example, the function can:

• Connect custom source or sink blocks.
• Add a plant subsystem for closed-loop testing.
• Change the configuration set.
• Enable signal logging.
• Change the simulation stop time.

The test harness customization function runs as a test harness post-create callback or
post-rebuild callback. To customize a test harness using a callback function:

1 Create the callback function.
2 In the function, use the Simulink programmatic interface to script the commands to

customize the test harness. For more information, see the functions listed in
“Programmatic Model Editing” (Simulink).

3 Specify the function as the post-create or post-rebuild callback:

• For a new test harness,

• If you are using the UI, enter the function name in the Post-create callback
method or Post-rebuild callback method in the Advanced Properties of
the harness creation dialog box.

• If you are using sltest.harness.create, specify the function as the
PostCreateCallback or PostRebuildCallback value.

• For an existing test harness,

• If you are using the UI, enter the function name in Post-rebuild callback
method in the harness properties dialog box.

2 Test Harness

2-40

• If you are using sltest.harness.set, specify the function as the
PostRebuildCallback value.

For more information on test harness properties, see “Create Test Harnesses and
Select Properties” on page 2-13.

Callback Function Definition and Harness Information
The callback function declaration is

function myfun(x)

where myfun is the function name and myfun accepts input x. x is a struct of information
about the test harness automatically created when the test harness uses the callback. You
can choose the function and argument names.

For example, define a harness callback function harnessCustomization.m:

function harnessCustomization(harnessInfo)

% Script commands here to customize your test harness.

end

In this example, harnessInfo is the struct name and harnessCustomization is the
function name. When the create or rebuild operation calls harnessCustomization,
harnessInfo is populated with information about the test harness, including handles to
the test harness model, main model, and blocks in the test harness.

For example, using harnessCustomization as a callback for the following test harness:

 Customize Test Harnesses

2-41

populates harnessInfo with handles to three sources, one sink, the main model, harness
model, harness owner, component under test, and conversion subsystems:

harnessInfo =

 struct with fields:

 MainModel: 2.0001
 HarnessModel: 1.1290e+03
 Owner: 17.0001
 HarnessCUT: 201.0110
 DataStoreMemory: []
 DataStoreRead: []
 DataStoreWrite: []
 Goto: []
 From: []
 GotoTag: []
 SimulinkFunctionCaller: []
 SimulinkFunctionStub: []
 Sources: [1.1530e+03 1.1540e+03 1.1550e+03]
 Sinks: 1.1630e+03
 AssessmentBlock: []
 InputConversionSubsystem: 1.1360e+03
 OutputConversionSubsystem: 1.1560e+03
 CanvasArea: [215 140 770 260]

Use the struct fields to customize the test harness. For example:

• To add a Constant block named ConstInput to the test harness, get the name of the
test harness model, then use the add_block function.

harnessName = get_param(harnessInfo.HarnessModel,'Name');
block = add_block('simulink/Sources/Constant',[harnessName '/ConstInput']);

• To get the port handles for the component under test, get the 'PortHandles'
parameter for harnessInfo.HarnessCUT.

CUTPorts = get_param(harnessInfo.HarnessCUT,'PortHandles');
• To get the simulation stop time for the test harness, get the 'StopTime' parameter

for harnessInfo.HarnessModel.

st = get_param(harnessInfo.HarnessModel,'StopTime');
• To set a 16 second simulation stop time for the test harness, set the 'StopTime'

parameter for harnessInfo.HarnessModel.

2 Test Harness

2-42

set_param(harnessInfo.HarnessModel,'StopTime','16');

How to Display Harness Information struct Contents
To list the harness information for your test harness:

1 In the callback function, add the line

disp(harnessInfo)
2 Create or rebuild a test harness using the callback function.
3 When you create or rebuild the test harness, the harness information structure

contents are displayed on the command line.

Customize a Test Harness to Create Mixed Source Types
This example harness callback function connects a Constant block to the third component
input of this example test harness.

The function follows the procedure:

1 Get the harness model name.
2 Add a Constant block.
3 Get the port handles for the Constant block.
4 Get the port handles for the input conversion subsystem.
5 Get the handles for lines connected to the input conversion subsystem.
6 Delete the existing Inport block.
7 Delete the remaining line.

 Customize Test Harnesses

2-43

8 Connect a new line from the Constant block to input 3 of the input conversion
subsystem.

function harnessCustomization(harnessInfo)

% Get harness model name:
harnessName = get_param(harnessInfo.HarnessModel,'Name');

% Add Constant block:
constBlock = add_block('simulink/Sources/Constant',[harnessName '/ConstInput']);

% Get handles for relevant ports and lines:
constPorts = get_param(constBlock,'PortHandles');
icsPorts = get_param(harnessInfo.InputConversionSubsystem,'PortHandles');
icsLineHandles = get_param(harnessInfo.InputConversionSubsystem,'LineHandles');

% Delete the existing Inport block and the adjacent line:
delete_block(harnessInfo.Sources(3));
delete_line(icsLineHandles.Inport(3));

% Connect the Constant block to the input conversion subsystem:
add_line(harnessInfo.HarnessModel,constPorts.Outport,icsPorts.Inport(3),...
'autorouting','on');

end

2 Test Harness

2-44

Test Harness Callback Example
This example shows how to use a post-create callback to customize a test harness. The
callback changes one harness source from an Inport block to Constant block and enables
signal logging in the test harness.

The Model

In this example, you create a test harness for the Roll Reference subsystem.

open_system('RollAutopilotMdlRef')

Get Path to the Harness Customization Function

cbFile = fullfile(matlabroot,'examples','simulinktest','main',...
 'harnessSourceLogCustomization.m');

 Customize Test Harnesses

2-45

The Customization Function and Test Harness Information

The function harnessSourceLogCustomization changes the third source block, and
enables signal logging on the component under test inputs and outputs. You can read the
function by entering:

 type(cbFile)

The function uses an argument. The argument is a struct listing test harness information.
The information includes handles to blocks in the test harness, including:

• Component under test
• Input subsystems
• Sources and sinks
• The harness owner in the main model

For example, harnessInfo.Sources lists the handles to the test harness source blocks.

Create the Customized Test Harness

1. Copy the harness customization function to the temporary working directory.

copyfile(cbFile,tempdir);
cd(tempdir);

2. In the RollAutopilotMdlRef model, right-click the Roll Reference subsystem
and select Test Harness > Create for Roll Reference.

3. In the harness creation dialog box, for Post-create callback method, enter
harnessSourceLogCustomization.

4. Click OK to create the test harness. The harness shows the signal logging and
simulation stop time specified in the callback function.

You can also use the sltest.harness.create function to create the test harness,
specifying the callback function with the 'PostCreateCallback' name-value pair.

sltest.harness.create('RollAutopilotMdlRef/Roll Reference',...
 'Name','LoggingHarness',...
 'PostCreateCallback','harnessSourceLogCustomization');

sltest.harness.open('RollAutopilotMdlRef/Roll Reference','LoggingHarness');

2 Test Harness

2-46

close_system('RollAutopilotMdlRef',0);

See Also
sltest.harness.create | sltest.harness.set

Related Examples
• “Create Test Harnesses and Select Properties” on page 2-13

 See Also

2-47

Create Test Harnesses from Standalone Models
In this section...
“Test Harness Import Workflow” on page 2-48
“Component Compatibility for Test Harness Import” on page 2-49
“” on page 2-50

Standalone test models are often used to verify your main model. You can create Simulink
Test test harnesses by importing your standalone test models. Importing standalone
models enables synchronization and management features, allowing you to:

• Iterate on your design, using model and test harness synchronization
• Manage test harnesses, using the UI and programmatic interface
• Clarify ownership of a test harness by a model, subsystem, or library being tested

A common test model passes input signals to a copy of a subsystem or a Model block
referencing your main model. Test models include models created by Simulink
Coverage™ and Simulink Design Verifier™.

Test Harness Import Workflow
Before importing a standalone model as a test harness, determine:

• In the main model, the model or component to associate the test harness with.
• The path to the standalone model.
• The tested component in the standalone model.

For example, this standalone model tests the Controller subsystem. The model
passes Inputs to Controller. Safety Properties verifies the Controller
output.

2 Test Harness

2-48

Component Compatibility for Test Harness Import
When you import a model as a test harness, the component in the main model must be
compatible with the component in the standalone model.

Component Compatibility for Test Harness Import

In the main model, if the component is: In the standalone model, the tested
component must be:

A user-defined function block (e.g. an S-
Function block)

The same block type

The top-level model A Model block or a subsystem
A subsystem A subsystem, Model block, or a user-

defined function block
A Model block A Model block or a subsystem

You cannot create a test harness by importing:

• Libraries
• Models that have existing test harnesses
• Models with unsaved changes. Save open models before importing

 Create Test Harnesses from Standalone Models

2-49

Import a Standalone Model as a Test Harness

This example shows how to import a standalone test model to create a test harness in
Simulink Test.

The main model sltestBasicCruiseControl is a cruise control system, with root
import and output blocks.

The test model contains a Signal Builder block driving a copy of the Controller
subsystem, with a subsystem verifying that the throttle output goes to 0 if the brake is
applied for three consecutive time steps.

2 Test Harness

2-50

Create a Test Harness from the Standalone Model

1. In the main model, right-click the Controller subsystem and select Test Harness >
Import for 'Controller'.

2. Set the following harness properties:

• Name: VerificationSubsystemHarness
• Simulink model to import: Click Browse and select

sltestBasicCruiseControlHarnessModel in the MATLAB® examples/
simulinktest directory.

• Component under Test in imported model: Controller

3. Click OK.

 Create Test Harnesses from Standalone Models

2-51

A test harness is created from the standalone model, owned by the Controller
subsystem in the main model. Click the badge to preview the test harness.

See Also
sltest.harness.import

Related Examples
• “Test Harness and Model Relationship” on page 2-2
• “Synchronize Changes Between Test Harness and Model” on page 2-53

2 Test Harness

2-52

Synchronize Changes Between Test Harness and Model
In this section...
“Set Synchronization for a New Test Harness” on page 2-53
“Change Synchronization of an Existing Test Harness” on page 2-54
“Synchronize Configuration Set and Model Workspace Data” on page 2-54
“Check for Unsynchronized Component Differences” on page 2-55
“Rebuild a Test Harness” on page 2-55
“Push Changes from Test Harness to Model” on page 2-56
“Check Component and Push Parameter to Main Model” on page 2-56

A test harness provides an isolated environment to test design changes. You can
synchronize changes from the test harness to the main model, or from the main model to
the test harness. Synchronization includes these model elements:

• The component under test
• Block parameters
• Optionally, the model or test harness configuration set
• Optionally, the model workspace parameters

You do not need to synchronize base workspace data because it is available to both test
harness and main model.

Set Synchronization for a New Test Harness
When creating a test harness, you specify when changes in the test harness are
synchronized with the main model. Synchronization can occur automatically or manually.
If you plan to try out different component designs in the test harness, use manual
synchronization to avoid overwriting the component in the main model. Depending on the
type of component under test in your harness, you can select from several
synchronization options, which are combinations of the following actions:

• On harness open — The component in the test harness is updated when the harness
opens. Synchronizing on harness open is useful if you update the design in the main
model.

• On harness close — The component in the main model is updated when the harness
closes. Synchronizing on harness close is useful if you make design changes in the test

 Synchronize Changes Between Test Harness and Model

2-53

harness. Avoid synchronizing on harness close if you want to prevent inadvertent
changes to the component in the main model.

• During push — Synchronization occurs manually, by selecting Analysis > Test
Harness > Push Component and Parameters to Main Model.

• During rebuild — Synchronization occurs manually, by selecting Analysis > Test
Harness > Rebuild Harness from Main Model.

If you use the command line, set the SynchronizationMode property with
sltest.harness.create.

Note If you create a test harness in SIL or PIL mode for a Model block, the block mode in
the test harness is changed to SIL or PIL, respectively. This mode is not updated to the
main model when you close the test harness.

Maintain SIL or PIL Block Fidelity If you use a software-in-the-loop (SIL) or processor-
in-the-loop (PIL) block in the test harness, consider setting the test harness to rebuild
every time it opens. Regularly rebuilding the test harness ensures that the generated
code referenced by the SIL/PIL block reflects the main model.

Change Synchronization of an Existing Test Harness
To change a test harness synchronization mode:

1 Close the test harness.
2 In the main model, click the harness badge on the block or the Simulink canvas.
3 In the test harness thumbnail preview, click the Harness operations icon and select

Properties.
4 Change the Synchronization Mode in the properties dialog box.

If you use the command line, set the SynchronizationMode property with
sltest.harness.set.

Synchronize Configuration Set and Model Workspace Data
To synchronize the configuration set and workspace parameters between the test harness
and main model, select Update Configuration Parameters and Model Workspace
data on rebuild in the harness creation or harness properties dialog box.

2 Test Harness

2-54

Check for Unsynchronized Component Differences
If your test harness does not synchronize changes, you can check for unsynchronized
component differences between the test harness and main model. Checking for
unsynchronized differences can be useful if:

• You are making tentative design changes in the test harness and want to check that
the main model component is not overwritten.

• You have made design changes to the main model and want to check which test
harnesses must be rebuilt.

From the test harness window, select Analysis > Test Harness > Check to check for
differences. If the component differs, you can push changes from the test harness to the
main model, or rebuild the test harness from the main model. Also see the
sltest.harness.check function.

Consider these conditions when checking for unsynchronized differences:

• sltest.harness.check only includes the block diagram, block parameters, and
mask parameters in the comparison between the test harness and main model. Port
options, compiled attributes, hidden parameters, and model reference data logging
parameters are not included in the comparison.

• If the component contains a Simscape™ Solver Configuration block, the check result
always shows that the component differs between the test harness and main model.
The Solver Configuration block is affected by Simscape blocks outside the component,
and therefore always differs between the test harness and main model.

Rebuild a Test Harness
Rebuild a test harness to reflect the latest state of the main model. In the test harness,
select Analysis > Test Harness > Rebuild Harness from Main Model. In addition to
updating the component under test and block parameters, this operation rebuilds harness
conversion subsystems. If the test harness does not have conversion subsystems,
rebuilding adds them.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main
model, signal lines in the test harness can be disconnected. If lines are disconnected,
reconnect signal lines to the component under test or conversion subsystems.

For more information, see “Create Test Harnesses and Select Properties” on page 2-13
and sltest.harness.rebuild.

 Synchronize Changes Between Test Harness and Model

2-55

Push Changes from Test Harness to Model
After changing your system in the test harness, you can push changes to the main model.
In the test harness, select Analysis > Test Harness > Push Component and
Parameters to Main Model. This process overwrites the component in the main model.

Check Component and Push Parameter to Main Model
This example shows a basic workflow of updating a parameter in a test harness, checking
the synchronization between the test harness and main model, and pushing the
parameter change from the test harness to the main model.

This example also includes programmatic steps.

Open the model sltestCar. The model includes a transmission shift controller algorithm
and simplified powertrain and vehicle dynamics.

open_system('sltestCar');

2 Test Harness

2-56

Update the Mask Parameter in the Test Harness

1. Open the test harness. Click the badge on the shift_logic chart and select the
ShiftLogic_InportHarness test harness. The test harness is set to synchronize only
when you push to or rebuild from the main model.

sltest.harness.open('sltestCar/shift_logic','ShiftLogic_InportHarness');

2. Double-click the shift_logic subsystem. For Delay before gear change (tick),
enter 4. Click OK.

shiftLogicMask = Simulink.Mask.get('ShiftLogic_InportHarness/shift_logic');
maskParamValue = shiftLogicMask.Parameters.Value;
shiftLogicMask.Parameters.Value = '4'; % Set the new parameter value

Check Synchronization between Test Harness and Main Model

On the command line, run the sltest.harness.check function.

[comparison,details] = sltest.harness.check('sltestCar/shift_logic',...
 'ShiftLogic_InportHarness');

The results show that the component under test is different in the test harness due to the
updated mask parameter.

comparison

comparison =

 logical

 0

 Synchronize Changes Between Test Harness and Model

2-57

details

details =

 struct with fields:

 overall: 0
 contents: 1
 reason: 'The contents of harnessed component and the contents of the component in the main model are same, but they differ in terms of block or mask parameters.'

Update the Parameter to the Main Model

1. In the test harness, select Analysis > Test Harness > Push Component and
Parameters to Main Model.

2. In the main model, double-click the shift_logic subsystem. The parameter value is
updated.

sltest.harness.push('sltestCar/shift_logic','ShiftLogic_InportHarness')

Re-check Synchronization between Test Harness and Main Model

On the command line, update the main model and test harness. Then, run the
sltest.harness.check function.

set_param('sltestCar','SimulationCommand','update');
set_param('ShiftLogic_InportHarness','SimulationCommand','update');

[comparison,details] = sltest.harness.check('sltestCar/shift_logic',...
 'ShiftLogic_InportHarness');

The results show that the component under test is the same between the test harness and
the main model.

comparison

comparison =

 logical

 1

2 Test Harness

2-58

details

details =

 struct with fields:

 overall: 1
 contents: 1
 reason: 'The checksum of the harnessed component and the component in the main model are same.'

close_system('sltestCar',0);

See Also
sltest.harness.check | sltest.harness.push | sltest.harness.rebuild

Related Examples
• “SIL Verification for a Subsystem” on page 5-2

 See Also

2-59

Test Library Blocks
In this section...
“Library Testing Workflow” on page 2-60
“Library and Linked Subsystem Test Harnesses” on page 2-60
“Edit Library Block from a Test Harness” on page 2-62
“Testing a Library and a Linked Block” on page 2-62

If your model includes instances of blocks from a library, you can test both the source
block in the library, and individual block instances in other models. First, create test
harnesses for a library block to test your design. Once the library block meets your
requirements, create test harnesses for linked blocks and test the subsystem instances.
You can move test harnesses from the library to an instance and an instance to the library.

Library Testing Workflow
This procedure outlines an example workflow for testing library subsystems and linked
subsystems.

1 Create a test case and a test harness for the library subsystem.
2 Test the library subsystem. If it fails your requirements, revise the design and test

again.
3 Lock the library when your tests pass.
4 In your model, create a linked subsystem and retain the library test harnesses.
5 Compare the output of the linked instance to that of the library block using an

equivalence test case.
6 Create additional test cases and test harnesses for the linked instance.
7 Promote a test harness from the linked subsystem to the library if you want to include

the test harness with future linked subsystems.

Library and Linked Subsystem Test Harnesses
A test harness for a library subsystem has specific properties:

• Libraries do not compile, so a test harness for a library subsystem does not use
compiled attributes such as data type or sample rate.

2 Test Harness

2-60

• A test harness for a library subsystem does not generate conversion subsystems for
the block inputs and outputs.

• A library subsystem test harness does not use push or rebuild operations, because
libraries do not use configuration parameters.

When you create a linked subsystem from a library subsystem, test harnesses copy to the
linked instance. If you do not need the test harnesses, you can delete them. For
instructions on deleting all test harnesses from a model, see “Manage Test Harnesses” on
page 2-28.

When you create a test harness for a linked subsystem, the harness associates with the
linked subsystem, not the library subsystem. You can move a test harness from a linked
subsystem to the library subsystem. For example, this linked subsystem Controller has
three test harnesses. To move the Requirements_Tests1 test harness to the library:

1 Click the harness badge on the linked subsystem.
2 Click the Harness Operations icon.

3 Select Move to Library.
4 A dialog box informs you that moving the harness removes it from the linked

subsystem.

 Test Library Blocks

2-61

5 After confirmation, the harness appears with the library subsystem.

Edit Library Block from a Test Harness
You can apply an iterative design and test workflow to libraries by testing a library block
in a test harness and updating the component under test. Changes to the component
under test synchronize to the library when you close the test harness.

If you have a library block whose design is complete, set your test harnesses to prevent
changes to the component under test. You can set this property when you create the test
harness or after harness creation. See “Create Test Harnesses and Select Properties” on
page 2-13.

Testing a Library and a Linked Block
Verify a reusable subsystem in a library and in a larger system.

This example demonstrates a test case that confirms a library block meets a short set of
requirements. After testing the library block, you execute a baseline test of a linked block
and capture the baseline results. You then promote the baseline test harness to the
library.

The library block controls a simple heatpump system by supplying on/off signals to a fan
and compressor, and specifying the heatpump mode (heating or cooling).

Open the Test File

Enter the following to store paths and filenames for the example, and to open the test file.
The test file contains a test case for the library block and for the block instance in a
closed-loop model.

filePath = fullfile(matlabroot,'toolbox','simulinktest','simulinktestdemos');
testFile = 'sltestHeatpumpLibraryTests.mldatx';
library = 'sltestHeatpumpLibraryExample';
system = 'sltestHeatpumpLibraryLinkExample';
open(fullfile(filePath,testFile));

2 Test Harness

2-62

Expand the Library Block Test test suite, and highlight the Requirements Scenarios
test case in the test browser. Expand the Test Harness section of System Under Test,
and click the arrow to open the test harness for the library block.

open_system(library);
sltest.harness.open([library '/Controller'],'Requirements_Tests');

 Test Library Blocks

2-63

The Test Sequence block sets three scenarios for the controller:

• The controller at idle
• The controller activating the fan only
• The controller activating the heating anc cooling system

The Test Assessment block in the test harness checks the signals for each scenario. Since
the test inputs and assessments are contained in the test harness, and no baseline data is
being captured, the test case is a simulation test.

Run the Requirements-Based Test

In the Test Manager, run the Requirements Scenarios test case. The verify statement
results show that the control_out signals pass.

2 Test Harness

2-64

Open the Linked Block Model

In the Test Manager, expand Instance Test. Highlight the Baseline Test test case. In the
System Under Test, click the arrow next to the Model field to open the model.

sltest.harness.close([library '/Controller'], 'Requirements_Tests');
open_system(system);
sim(system);

 Test Library Blocks

2-65

The controller is a linked block to the library. It is associated with a test harness Baseline
Test that compares simulation results of the instance against baseline data. In your
workflow, successful baseline testing for an instances of a library block can show that the
linked block simulates correctly in the containing model. The test harness supplies a sine
wave temperature and captures the controller output.

Run the Baseline Test and Observe Results

In the Test Manager, click Run to execute the test. The results show that the baseline test
passes.

2 Test Harness

2-66

Move the Test Harness to the Library

If you develop a particularly useful test for a linked block, you can promote the test
harness from a linked block to the source library block. The test harness then copies to all
future instances of the library block.

Move the Baseline_controller_tests test harness to the library block:

1. In the sltestHeatpumpLibraryLinkExample model, click the harness badge and hover
over the Baseline_controller_tests test harness.

2. Click the harness operations icon

 Test Library Blocks

2-67

3. Select Move to Library. A dialog informs you that the operation deletes the test
harness from the instance and adds it to the library. Click Yes.

4. The test harness moves to the Controller library block.

close_system(library,0);
close_system(system,0);
clear(filePath,library,system,testFile);
sltest.testmanager.clear;
sltest.testmanager.clearResults;

See Also

Related Examples
• “Testing a Library and a Linked Block”

2 Test Harness

2-68

Test Sequences and Assessments

• “Test Sequence Basics” on page 3-2
• “Assess Simulation and Compare Output Data” on page 3-10
• “Assess Model Simulation Using verify Statements” on page 3-15
• “Verify Multiple Conditions at a Time” on page 3-22
• “Test Sequence Editor” on page 3-24
• “Actions and Transitions” on page 3-38
• “Signal Generation Functions” on page 3-47
• “Programmatically Create a Test Sequence” on page 3-55
• “Test Sequence and Assessment Syntax” on page 3-60
• “Debug a Test Sequence” on page 3-69
• “Test Downshift Points of a Transmission Controller” on page 3-72
• “View Graphical Results From Model Verification Library” on page 3-79
• “Assess Temporal Logic Using Temporal Assessments” on page 3-82
• “Temporal Assessment Parameters” on page 3-88

3

Test Sequence Basics
In this section...
“Test Sequence Hierarchy” on page 3-2
“Transition Types” on page 3-2
“Create a Basic Test Sequence” on page 3-4
“Create Basic Test Assessments” on page 3-5

A test sequence consists of test steps arranged in a hierarchy. You can use a test sequence
to define test inputs and to define how a test will progress in response to the simulation.
A test step contains actions that execute at the beginning of the step. A test step can
contain transitions that define when the step stops executing, and which test step
executes next. Actions and transitions use MATLAB as the action language. You create
test sequences by using the Test Sequence block and the Test Sequence Editor on page 3-
24.

Test Sequence Hierarchy
Test sequences can have parent steps and substeps. Substeps can activate only if the
parent step is active. A group of steps in the same hierarchy level shares a common
transition type. When you create a test step, the step becomes a transition option for
other steps in the same group.

Transition Types
Test sequences transition from one step to another in two ways:

• Standard transition: You can define a sequence of actions that react to simulation
conditions using a standard transition sequence. Standard transition sequences start
with the first step and progress according to transition conditions and next steps.

This test sequence sets the value of Boolean outputs RedButtonIn and
GreenButtonIn, with transitions happening after each step has been active for 1 sec.

3 Test Sequences and Assessments

3-2

• When decomposition: When decomposition sequences are analogous to switch
statements in programming. Your sequence can act based on specific conditions
occurring in your model. In a When decomposition sequence, steps activate based on a
condition that you define after the step name. Transitions are not used between steps.

This When decomposition contains three verify statements. Each verify statement
is active when the signal gear is equal to a different value. For more information, see
“Test Sequence Editor” on page 3-24.

 Test Sequence Basics

3-3

Create a Basic Test Sequence
In this example, you create a simple test sequence for a transmission shift logic controller.

1 Open the model. At the command line, enter

openExample('simulinktest/TransmissionDownshiftTestSequenceExample')
2 Right-click the shift_controller subsystem and select Test Harness > Create

for ‘shift_controller’.
3 In the Create Test Harness dialog box, under Sources and Sinks:

• Under Sources and Sinks, select Test Sequence from the source drop-down
menu.

• Under Sources and Sinks, select Add separate assessment block.
• Select Open harness after creation.

4 Click OK. The test harness for the shift_controller subsystem opens.
5 Double-click the Test Sequence block. The Test Sequence Editor opens.

6 Create the test sequence.

a Rename the first step Accelerate and add the step actions:

speed = 10*ramp(et);
throttle = 100;

3 Test Sequences and Assessments

3-4

b Right-click the Accelerate step and select Add step after. Rename this step
Stop, and add the step actions:

throttle = 0;
speed = 0;

c Enter the transition condition for the Accelerate step. In this example,
Accelerate transitions to Stop when the system is in fourth gear for 2 seconds.
In the Transition column, enter:

duration(gear == 4) >= Limit

In the Next Step column, select Stop.
d Add a constant to define Limit. In the Symbols pane, hover over Constant and

click the add data button. Enter Limit for the constant name.
e Hover over Limit and click the edit button. In the Constant value field, enter

2. Click OK.

Create Basic Test Assessments
1 Continuing the example, in the test harness, double-click the Test Assessment block

to open the editor. The editor displays a When decomposition sequence.
2 Rename the first step Assessments.
3 Add two steps to Assessments. Right-click the Assessments step and select Add

sub-step. Do this a second time. There should be four steps under Assessments.

 Test Sequence Basics

3-5

4 Enter the names and actions for the four substeps.

Check1st when gear == 1
verify(speed < 45)

Check2nd when gear == 2
verify(speed < 75)

Check3rd when gear == 3
verify(speed < 105)

Else

The fourth step Else has no actions. Else handles simulation conditions outside of
the preceding when conditions.

5 Add a scope to the harness and connect the speed, throttle, and gear signals to
the scope.

3 Test Sequences and Assessments

3-6

6 Set the model simulation time to 15 seconds and simulate the test harness. View the
signal data by opening the scope.

 Test Sequence Basics

3-7

7 View the results of the verify statements in the Simulation Data Inspector.

3 Test Sequences and Assessments

3-8

See Also
“Test Sequence Editor” on page 3-24 | “Test Sequence and Assessment Syntax” on page
3-60 | Test Sequence

 See Also

3-9

Assess Simulation and Compare Output Data

In this section...
“Overview” on page 3-10
“Compare Simulation Data to Baseline Data or Another Simulation” on page 3-11
“Post-Process Results With a Custom Script” on page 3-11
“Run-Time Assessments” on page 3-12

Overview
Functional testing requires assessing simulation behavior and comparing simulation
output to expected output. For example, you can:

• Analyze signal behavior in a time interval after an event.
• Compare two variables during simulation.
• Compare timeseries data to a baseline.
• Find peaks in timeseries data, and compare the peaks to a pattern.

This topic provides an overview to help you author assessments for your particular
application. In the topic, you can find links to more detailed examples of each assessment.

You can include assessments in a test case, a model, or a test harness.

• In a test case, you can:

• Compare simulation output to baseline data.
• Compare the output of two simulations.
• Post-process simulation output using a custom script.

• In a test harness or model, you can:

• Verify logical conditions in run-time using a verify statement, which returns a
pass, fail, or untested result for each time step.

• Use assert statements to stop simulation on a failure.

• Use blocks from the Model Verification or Simulink Design Verifier library.

3 Test Sequences and Assessments

3-10

Compare Simulation Data to Baseline Data or Another
Simulation
Baseline criteria are tolerances for simulation data compared to baseline data.
Equivalence criteria are tolerances for two sets of simulation data, each from a different
simulation. You can set tolerances for numeric, enumerated, or logical data.

Set a numeric tolerance using absolute or relative tolerances. Set time tolerances using
leading and lagging tolerances. For numeric data, you can specify absolute tolerance,
relative tolerance, leading tolerance, or lagging tolerance. For enumerated or logical
data, you can specify leading or lagging tolerance. Results outside the tolerances fail. For
more information, see “Set Signal Tolerances” on page 7-90.

Specify the baseline data and tolerances in the Test Manager Baseline Criteria or
Equivalence Criteria section. Results appear in the Results and Artifacts pane. The
comparison plot displays the data and differences.

This graphic shows an example of baseline criteria. The baseline criteria sets a relative
tolerance for signals output torque and vehicle speed.

Post-Process Results With a Custom Script
You can analyze simulation data using specialized functions by using a custom criteria
script. For example, you could find peaks in timeseries data using Curve Fitting Toolbox™
functions. A custom criteria script is MATLAB code that runs after the simulation. Custom
criteria scripts use the MATLAB Unit Test framework.

Write a custom criteria script in the Test Manager Custom Criteria section of the test
case. Custom criteria results appear in the Results and Artifacts pane. Results are
shown for individual MATLAB Unit Test qualifications. For more information, see “Process
Test Results with Custom Scripts” on page 7-111.

This simple test case custom criteria verifies that the value of slope is greater than 0.

 Assess Simulation and Compare Output Data

3-11

% A simple custom criteria
test.verifyGreaterThan(slope,0,'slope must be greater than 0')

Run-Time Assessments
verify Statements

For general run-time assessments, use verify statements. A verify statement
evaluates a logical expression and returns a pass, fail, or untested result for each
simulation time step. verify statements can include temporal and conditional syntax. A
failure does not stop simulation.

Enter verify statements in a Test Assessment or Test Sequence block, using the Test
Sequence Editor. You can use verify statements with or without a test case in the Test
Manager. Without a test case, results appear in the Simulation Data Inspector. With a test
case, results appear in the Test Manager.

For information on using verify statements in your model, see “Assess Model Simulation
Using verify Statements” on page 3-15.

assert Statements

You can use assert statements in a Test Assessment or Test Sequence block to stop
executing an invalid test. assert evaluates a logical argument, but unlike verify,
assert stops simulation. Failures appear as simulation errors. To make results easier to
interpret, add an optional message.

For example, if a component under test outputs two signals h and k, and the test requires
h and k to initialize to 0, use assert to stop the test if the signals do not initialize. This
assert statement returns a message 'Signals must initialize to 0' if the
logical condition h == 0 && k == 0 fails.

3 Test Sequences and Assessments

3-12

Assessments for Real-Time Testing

If you are using a real-time test case, or if you want to reuse a desktop simulation test
case on a real-time target, use verify statements. verify statements are built into the
real-time application, and run on the real-time target. See “Assess Model Simulation
Using verify Statements” on page 3-15.

Model Verification Blocks

Use blocks from the Simulink Model Verification library or the Simulink Design Verifier
library to assess signals in your model or test harness. pass, fail, or untested results
from each block appear in the Test Manager. For more information, see “View Graphical
Results From Model Verification Library” on page 3-79.

Examples of Run-Time Assessments

This example test harness includes:

• A verify statement in the Test Assessment block, verifying that signalC >= 5.
• An Assertion block verifying that throttle >= 0.

 Assess Simulation and Compare Output Data

3-13

See Also

Related Examples
• “Compare Model Output To Baseline Data” on page 7-9
• “Test Two Simulations for Equivalence”

3 Test Sequences and Assessments

3-14

Assess Model Simulation Using verify Statements
You can verify model simulation by including a Test Assessment block in your model or
test harness, and authoring verify statements in the Test Assessment block. verify
statements return pass, fail, or untested results for both the overall simulation and
individual time steps. Results appear in the Test Manager.

Activate verify Statements in the Test Assessment Block
The Test Assessment contains a When decomposition on page 3-29 sequence. The When
decomposition sequence helps you clearly define the simulation condition that activates
each verify statement:

1 If your model uses a Test Sequence block source, consider activating each verify
statement using the active Test Sequence block step.

2 If your model does not use a Test Sequence block source, or your test sequence steps
do not correspond with conditions to verify, activate each verify statement using a
signal condition.

Activate verify Statements with Test Sequence Steps

Connect the Test Sequence and Test Assessment block with the active step signal from
the Test Sequence block. Activate each verify statement with the active step.

For example, this test harness contains a Test Sequence and Test Assessment block. The
blocks are connected by the Active_Step signal.

 Assess Model Simulation Using verify Statements

3-15

The Test Assessment block contains a When decomposition sequence with four substeps.
Each contains a verify statement and is activated with a different Test Sequence block
step.

To activate verify statements in a Test Assessment with active steps in a Test Sequence
blocks:

1 Create active step data output for the Test Sequence block:

a Select the Test Sequence block.

3 Test Sequences and Assessments

3-16

b Create a new enumerated data output. In the Property Inspector, select Create
data to monitor the active step.

c Name the enumeration.

2 Create a data input for the Test Assessment block:

a Open the Test Assessment block.
b In the Symbols sidebar, next to Input, click the Add data icon.
c Name the input.

3 In the block diagram, connect the Test Sequence block output to the Test Assessment
block input.

4 Create a When decomposition sequence in the Test Assessment block.

a The Test Assessment block is configured by default with a When decomposition
sequence. To change between a standard sequence and a When decomposition
sequence, right-click the parent step and select When decomposition.

b For each When decomposition step, define when the step is active by using the
active step enumeration data. For example:

VerifyBoth when TSActiveStepIN == TSActiveStepEnum.PressBothButtons
c Add verify statements to each assessment step.

Activate verify Statements with Signal Conditions

If your model does not use a Test Sequence block source, or if Test Sequence steps do not
correspond with conditions to verify, use unique signal conditions to activate verify

 Assess Model Simulation Using verify Statements

3-17

statements. Place verify statements in a When decomposition sequence, and use
conditional statements in the When conditions.

For example, this test harness uses a Signal Builder block input.

The Test Assessment block contains a When decomposition sequence. Each substep
contains a verify statement. A unique signal condition activates each substep.

3 Test Sequences and Assessments

3-18

Author verify Statements
verify statements evaluate logical expressions. You can label results in the Test
Manager with optional arguments.

A verify statement returns a pass, fail, or untested result for each time step and for
the overall simulation. A fail at any time step results in an overall fail. If there are no
failing results, a pass at any time step results in an overall pass. Otherwise, the overall
result is untested. Results appear in the Verify Statements section of the test results.

Syntax

verify statements use the syntax:

verify(expression)
verify(expression,errorMessage)
verify(expression,identifier,errorMessage)

where expressionis a logical expression. Use additional arguments to define an
errorMessage and a statement identifier. Error messages display in the diagnostic
viewer. You can use error messages to display key values at the time the statement fails.

For example, if verify evaluates an expression containing variables x and y, you can
display the values of x and y using the string:

 Assess Model Simulation Using verify Statements

3-19

'x and y values are %d, %d',x,y

An identifier labels the verify results in the Test Manager. The identifier uses a string of
the form 'prefix:suffix'. prefix and suffix are alphanumeric strings. For
example:

'SimulinkTest:x_equals_y'

verify Statement Considerations

• verify is not supported in Test Sequence blocks that use continuous-time updating.
Test Sequence block data can depend on factors such as the solver step time.
Continuous-time updating can cause differences in when block data and verify
statements update, which can lead to unexpected verify statement results.

If your model uses continuous time and you use verify statements in a Test
Sequence or Test Assessment block, consider explicitly setting a discrete block sample
time.

• If you use parallel test execution to run your tests, then you cannot use the Highlight
in Model button for verify results.

Example

In this comparison of two values, the parent step uses verify statements to assess two
local variables x and y during the simulation.

• verify(x >= y) passes overall because it is true for the entire test sequence.
• verify(x == y) and verify(x ~= y) fail because they fail in step_1_2 and

step_1_1, respectively.

The Test Manager displays the results:

3 Test Sequences and Assessments

3-20

See Also
“Test Sequence Editor” on page 3-24 | Test Sequence | Test Assessment

Related Examples
• “Verify Multiple Conditions at a Time” on page 3-22
• “Requirements-Based Testing for Model Development”

 See Also

3-21

Verify Multiple Conditions at a Time
To verify multiple conditions in a single time step, include verify statements inside if
statements, and include multiple if statements in a single test step.

For example, suppose you have a simple two-button utility function that operates as
exclusive-or logic. More than one of the following conditions can be valid at the same time
step.

Parallel Input Conditions and Expected Outputs

Condition Expected Output
RedButtonIN == false &&
GreenButtonIN == false

RedButtonOUT == false &&
GreenButtonOUT == false

GreenButtonIN == false GreenButtonOUT ~= true
RedButtonIN == false RedButtonOUT ~= true
RedButtonIN == true &&
GreenButtonIN == true

RedButtonOUT == false &&
GreenButtonOUT == false

RedButtonIN == true &&
GreenButtonIN == false

RedButtonOUT == true &&
GreenButtonOUT == false

RedButtonIN == false &&
GreenButtonIN == true

RedButtonOUT == false &&
GreenButtonOUT == true

To assess these conditions, this Test Assessment block includes six verify statements in
the first test step, contained in if statements. The test step is active during simulation,
and the if statements are evaluated at each time step.

3 Test Sequences and Assessments

3-22

See Also

 See Also

3-23

Test Sequence Editor

Input, Output, and Data Management
Manage inputs, outputs, and data objects using the Symbols sidebar of the Test

Sequence Editor. Click the symbols sidebar button on the toolbar to show or hide the
sidebar. To add a symbol, hover over the symbol type and click Add. To edit or delete a
data symbol, hover over the data symbol and click Edit or Delete.

If you add a symbol to the test sequence block, you can access that symbol from test steps
at any hierarchy level. For information on using messages, see “Actions and Transitions”
on page 3-38.

Symbol Type Description Procedure for Adding
Input Inputs can be data or

messages.
Click Add in the sidebar and
enter the input name.

Output Outputs can be data,
messages, or function calls.

Click Add in the sidebar and
enter the output name.

3 Test Sequences and Assessments

3-24

Symbol Type Description Procedure for Adding
Local Local data entries are

available inside the test
sequence block in which
they are defined.

Add a local variable in the
sidebar and initialize the
local variable in the first test
step.

Constant Constants are read-only
data entries available inside
the test sequence block in
which they are defined.

Add a constant in the
sidebar. Click Edit and
enter the constant value in
the dialog box, in the Initial
Value field.

Parameter Parameters are data
available inside and outside
the Test Sequence block.

Using the Model Explorer,
add a parameter in the
workspace of the model
containing the Test
Sequence block. Then add
the parameter name to the
Parameter symbols.

Data Store Memory Data Store Memory entries
are available inside and
outside the Test Sequence
block.

Using the Model Explorer,
add a Simulink.signal entry
in the workspace of the
model containing the Test
Sequence block.
Alternatively, add a Data
Store Memory block to the
model. Then add the data
store memory name to the
Data Store Memory
symbols.

Find and Replace
You can find and replace text in Test Sequence actions, transitions, and descriptions by
using the Find & Replace tool in the Test Sequence Editor:

1

To open the Find & Replace tool, click the icon in the toolbar.

 Test Sequence Editor

3-25

2 In the Find what: box, enter the text you want to locate.
3 In the Replace with: with box, enter the updated text.
4 To locate the text, click Find Next or Find Previous.
5 Click Replace to replace the old text with the updated text.

When running a search, the Find & Replace tool searches descriptions only if the
description column is open.

Add and Delete Test Steps
To add a test step, right-click a step. Select Add step before or Add step after. Select
Add sub-step to create a test step in a lower hierarchy level.

To delete a test step, right-click the step. Select Delete step. If the sequence contains
only one test step, you cannot delete it. You can delete the contents by selecting Erase
last step content.

Automatic Syntax Correction
The Test Sequence Editor changes the following syntax automatically:

• Duplicate test step names. For example, if step_1 exists, and you change another
step name to step_1, the step name you change automatically changes to step_2.

• Increment and decrement operations to use MATLAB as the action language, such
as a++ and a--. For example, a++ is changed to a=a+1.

• Assignment operations to use MATLAB as the action language, such as a+=expr, a–
=expr, a*=expr, and a/=expr. For example, a+=b is changed to a=a+b.

• Evaluation operations to use MATLAB as the action language, such as a!=expr
and !a. For example, a!=b is changed to a~=b.

• Explicit casts for literal constant assignments. For example, if y is defined as type
single, then y=1 is changed to y=single(1).

Copy Test Steps
You can cut or copy test steps, and paste them before or after another step. You can also
paste them in a hierarchy below another step. Right-click the test step and select Cut
step or Copy step. To paste, right-click another test step and select Paste step > Paste

3 Test Sequences and Assessments

3-26

before step or Paste step > Paste after step. To paste in a lower hierarchy, select
Paste step > Paste sub-step.

You can also use Ctrl+X, Ctrl+C, and Ctrl+V shortcuts.

Reorder Test Steps and Transitions
You can reorder test steps from the editor. Hover over the icon to the left of the step
name. Click and drag the icon to reorder the test step. Test steps can be reordered within
the same hierarchy level. Substeps are also moved with the test step.

You can reorder step transitions within the same test step. Hover over the transition
number. Click and drag the number to reorder the transition. The corresponding next step
is maintained.

Change Test Step Hierarchy
Change test step hierarchy level by indenting or outdenting the test step. Right-click the
test step, and select Indent step to move it to a lower level, or Outdent step to move it
to a higher level.

• Moving to a lower hierarchy level (indenting) requires a preceding step at the same
hierarchy level. You cannot indent the first test step in a sequence or the first step in a
hierarchy group.

• Only the last step in a hierarchy group can be moved to a higher level.

 Test Sequence Editor

3-27

Standard Test Step Sequences
A standard sequence progresses according to transition conditions and next steps. The
default step is the first test step listed in the sequence. To create a standard sequence:

• Add new steps to the sequence.
• Define outputs and assessments in the Step cell. For example, this code sets on_off

to false and verifies that the FanOn signal is true.

on_off = false;
verify(FanOn == true);

• For each step that requires a transition, hover over the Transition cell and click Add
transition. Define the step exit conditions in the transition. For example, this code
transitions to another step after the current step has been active for 20 seconds.

after(20,sec)
• Select the next test step from the drop-down list in the Next Step cell.

3 Test Sequences and Assessments

3-28

When Decomposition Sequences
A When decomposition sequence contains a set of two or more substeps. Conceptually, a
When decomposition sequence uses logic similar to if-elseif-else. You define a
logical condition preceded by When for each substep, except for the final substep. The
logical conditions determine which step is active at a given time.

The final substep is not assigned a When condition. Similar to else, the final step is active
if a simulation condition does not match a When condition in the sequence. Each substep
in the When decomposition can contain actions. At each time step, the when statements
evaluate from first to last, and the first step with a valid condition activates.

To create a When decomposition sequence, right-click a test step and select When
decomposition. The step displays the icon . The Test Assessment block contains an
empty When decomposition by default:

 Test Sequence Editor

3-29

Add substeps to include more conditions in the sequence. Precede each condition with the
when operator. For example, to create a step named OverSpeed2 that activates when
gear is equal to 2, enter:

OverSpeed2 when gear == 2

This example When decomposition sequence contains:

• Assertions in the parent step AssertConditions. If one of the assert statements
become true, simulation stops.

• Three OverSpeed steps with When conditions. Each step activates with a value of
gear. A verify statement in each step verifies that speed remains below a limit.

• The Else step, which does not contain actions in this example.

3 Test Sequences and Assessments

3-30

Using When Decomposition to Write Tests

Assess a model using a When decomposition sequence.

This example shows how to use When decomposition in a Test Sequence block to author
assessments in a test harness. The example model implements a simple signal tracker
that operates in three modes: off (0), slow (1) and quick (2). Simulate the model and
observe the output and error of the signal tracker.

mdl = 'sltestTestSequenceWhenExample';
open_system(mdl);
open_system([mdl '/Scope']);
sim(mdl);

 Test Sequence Editor

3-31

3 Test Sequences and Assessments

3-32

 Test Sequence Editor

3-33

Open the test harness attached to the SimpleTracker subsystem, and open the Test
Sequence block named Test Assessment that assesses the behavior of
SimpleTracker.

The Test Sequence block uses When decomposition to determine the appropriate
assertions to run depending on the SimpleTracker mode. The CheckError step is a
When decomposition step, and it has three substeps, OffMode, SlowMode, and
QuickMode that are active when mode is 0, 1 or otherwise, respectively.

open_system(mdl);
sltest.harness.open([mdl '/SimpleTracker'],'SimpleTrackerHarness');
open_system('SimpleTrackerHarness/Test Assessment');

3 Test Sequences and Assessments

3-34

Simulate the test harness to run the assessments.

open_system('SimpleTrackerHarness/Scope');
sim('SimpleTrackerHarness');

 Test Sequence Editor

3-35

Close the test harness and main model.

close_system(mdl, 0);

3 Test Sequences and Assessments

3-36

clear mdl;

See Also
Test Sequence | Test Assessment | “Test Sequence and Assessment Syntax” on page 3-60

Related Examples
• “Programmatically Create a Test Sequence” on page 3-55

 See Also

3-37

Actions and Transitions
In this section...
“Transition Between Steps Using Temporal or Signal Conditions” on page 3-38
“Temporal Operators” on page 3-39
“Transition Operators” on page 3-40
“Use Messages in Test Sequences” on page 3-41

Transition Between Steps Using Temporal or Signal Conditions
The Test Sequence block uses MATLAB as the action language. You can transition
between test steps by evaluating the component under test. You can use conditional logic,
temporal operators, and event operators.

Consider a simple test sequence that outputs a sine wave at three frequencies. The test
sequence transitions between steps:

• From Initialize to Sine when Switch changes
• From Sine to Sine8 when Switch changes from the value 1
• From Sine8 to Sine16 when Switch changes to the value 13.344

3 Test Sequences and Assessments

3-38

Temporal Operators
To create an expression that evaluates the simulation time, use temporal operators.
Variables used in signal conditions must be inputs, parameters, or constants in the Test
Sequence block.

Operato
r

Syntax Description Example

et et(TimeUnits) The elapsed time of the
test step in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the test
sequence step in milliseconds:

et(msec)

t t(TimeUnits) The elapsed time of the
simulation in
TimeUnits. Omitting
TimeUnits returns the
value in seconds.

The elapsed time of the
simulation in microseconds:

t(usec)

after after(n,
TimeUnits)

Returns true if n
specified units of time
in TimeUnits elapse
since the beginning of
the current test step.

After 4 seconds:

after(4,sec)

before before(n,
TimeUnits)

Returns true until n
specified units of time
in TimeUnits elapse,
beginning with the
current test step.

Before 4 seconds:

before(4,sec)

duration ElapsedTime =
duration
(Condition,
TimeUnits)

Returns ElapsedTime
in TimeUnits for
which Condition has
been true.
ElapsedTime is reset
when the test step is re-
entered or when
Condition is no longer
true.

Return true if the time in
milliseconds since Phi > 1 is
greater than 550:

duration(Phi>1,msec) > 550

 Actions and Transitions

3-39

Syntax in the table uses these arguments:

TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs,
parameters, or constants, with at most one local or output data.

Examples:

u > 0
x <= 1.56

Transition Operators
To create expressions that evaluate signal events, use transition operators. Common
transition operators include:

Operator Syntax Description Example
hasChanged hasChanged(u) Returns true if u

changes in value
since the beginning
of the test step,
otherwise returns
false.

u must be an input
data symbol.

Transition when h
changes:

hasChanged(h)

3 Test Sequences and Assessments

3-40

Operator Syntax Description Example
hasChangedFrom hasChangedFrom(u,A) Returns true if u

changes from the
value A, otherwise
returns false.

u must be an input
data symbol.

Transition when h
changes from 1:

hasChangedFrom(h,1)

hasChangedTo hasChangedTo(u,B) Returns true if u
changes to the value
B, otherwise returns
false.

u must be an input
data symbol.

Transition when h
changes to 0:

hasChangedTo(h,0)

Use Messages in Test Sequences
Messages carry data between Test Sequence blocks and other blocks such as Stateflow®
charts. Messages can be used to model asynchronous events. A message is queued until
you evaluate it, which removes it from the queue. You can use messages and message
data inside a test sequence. The message remains valid until you forward it, or the time
step ends. For more information, see “Messages” (Stateflow) in the Stateflow®
documentation.

Receive Messages and Access Message Data

If your Test Sequence block has a message input, you can use queued messages in test
sequence actions or transitions. Use the receive command before accessing message
data or forwarding a message.

To create a message input, hover over Input in the Symbols sidebar, click the add
message icon, and enter the message name.

receive(M) determines whether a message is present in the input queue M, and removes
the message from the queue. receive(M) returns true if a message is in the queue, and

 Actions and Transitions

3-41

false if not. Once the message is received, you can access the message data using the
dot notation, M.data, or forward the message. The message is valid until it is forwarded
or the current time step ends.

The order of message removal depends on the queue type. Set the queue type using the
message properties dialog box. In the Symbols sidebar, click the edit icon next to the
message input, and select the Queue type.

Send Messages

To send a message, create a message output and use the send command. To create a
message output, hover over Output in the Symbols sidebar, click the add message icon,
and enter the message name.

You can assign data to the message using the dot notation M.data, where M is the
message output of the Test Sequence block. send(M) sends the message.

Forward Messages

You can forward a message from an input message queue to an output port. To forward a
message:

1 Receive the message from the input queue using receive.
2 Forward the message using the command forward(M,M_out) where M is the

message input queue and M_out is the message output.

Compare Test Sequences Using Data and Messages

This example demonstrates message inputs and outputs, sending, and receiving a
message. The model compares two pairs of test sequences. Each pair is comprised of a
sending and receiving test sequence block. The first pair sends and receives data, and the
second sends and receives a message.

Set the following path and model name variables.

filePath = fullfile(matlabroot,'examples','simulinktest');
model = 'sltest_testsequence_data_vs_message';

Open the model.

3 Test Sequences and Assessments

3-42

open_system(fullfile(filePath,model))

Test Sequences Using Data

The DataSender block assigns a value to a data output M.

The DataReceiver block waits 3 seconds, then transitions to step S2. Step S2 transitions
to step S3 using a condition comparing M to the expected value, and does the same for S3
to S4.

 Actions and Transitions

3-43

Test Sequences Using Messages

The MessageSender block assigns a value to the message data of a message output
M_out, then sends the message to the MessageReceiver block.

The MessageReceiver block waits 3 seconds, then transitions to step S2. Step S2's
transition evaluates the queue M with receive(M), removing the message from the
queue. receive(M) returns true since the message is present. M.data == 3.5
compares the message data to the expected value. The statement is true, and the
sequence transitions to step S3.

3 Test Sequences and Assessments

3-44

When step S3's transition condition evaluates, no messages are present in the queue.
Therefore, S3 does not transition to S4.

Run the test and observe the output comparing the different behaviors of the test
sequence pairs.

open_system([model '/Scope'])
sim(model)

 Actions and Transitions

3-45

close_system(model,0)
clear(model, filePath)

See Also
“Test Sequence and Assessment Syntax” on page 3-60 | Test Sequence

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-15
• “Signal Generation Functions” on page 3-47

3 Test Sequences and Assessments

3-46

Signal Generation Functions
In this section...
“Sinusoidal and Random Number Functions in Test Sequences” on page 3-47
“Using an External Function from a Test Sequence Block” on page 3-49
“Signal Generation Functions” on page 3-51

In the Test Sequence block, you can generate signals for testing.

1 Define an output data symbol in the Data Symbols pane.
2 Use the output name with a signal generation function in the test step action.

You can call external functions from the Test Sequence block. Define a function in a script
on the MATLAB path, and call the function in the test sequence.

Sinusoidal and Random Number Functions in Test Sequences
This example shows how to produce a sine and a random number test signal in a Test
Sequence block.

The step Sine outputs a sine wave with a period of 10 seconds, specified by the argument
et*2*pi/10. The step Random outputs a random number in the interval -0.5 to 0.5.

 Signal Generation Functions

3-47

The test sequence produces signal sg.

3 Test Sequences and Assessments

3-48

Using an External Function from a Test Sequence Block
This example shows how to call an externally-defined function from the Test Sequence
block. Define a function in a script on the MATLAB® path, and call the function from the
test sequence.

In this example, the step ReducedSine reduces the signal sg using the function
Attenuate.

 Signal Generation Functions

3-49

The test sequence produces signal sg and attenuated signal asg.

3 Test Sequences and Assessments

3-50

Signal Generation Functions
Some signal generation functions use the temporal operator et, which is the elapsed time
of the test step in seconds. Scaling, rounding, and other approximations of argument
values can affect function outputs. Common signal generation functions include:

 Signal Generation Functions

3-51

Function Syntax Description Example
square square(x) Represents a square wave

output with a period of 1
and range –1 to 1.

Within the interval 0 <=
x < 1, square(x)
returns the value 1 for 0
<= x < 0.5and –1 for
0.5 <= x < 1.

Output a square wave with
a period of 10 sec:

square(et/10)

sawtooth sawtooth(x) Represents a sawtooth
wave output with a period
of 1 and range –1 to 1.

Within the interval 0 <=
x < 1, sawtooth(x)
increases.

Output a sawtooth wave
with a period of 10 sec:

sawtooth(et/10)

triangle triangle(x) Represents a triangle
wave output with a period
of 1 and range –1 to 1.

Within the interval 0 <=
x < 0.5, triangle(x)
increases.

Output a triangle wave
with a period of 10 sec:

triangle(et/10)

ramp ramp(x) Represents a ramp signal
of slope 1, returning the
value of the ramp at time
x.

ramp(et) effectively
returns the elapsed time
of the test step.

Ramp one unit for every 5
seconds of test step
elapsed time:

ramp(et/5)

heaviside heaviside(x) Represents a heaviside
step signal, returning 0 for
x < 0 and 1 for x >= 0.

Output a heaviside signal
after 5 seconds:

heaviside(et-5)

3 Test Sequences and Assessments

3-52

Function Syntax Description Example
latch latch(x) Saves the value of x at the

first time latch(x)
evaluates in a test step,
and subsequently returns
the saved value of x.
Resets the saved value of
x when the step exits.
Reevaluates latch(x)
when the step is next
active.

Latch b to the value of
torque:

b = latch(torque)

sin sin(x) Returns the sine of x,
where x is in radians.

A sine wave with a period
of 10 sec:

sin(et*2*pi/10)

cos cos(x) Returns the cosine of x,
where x is in radians.

A cosine wave with a
period of 10 sec:

cos(et*2*pi/10)

rand rand Uniformly distributed
pseudorandom values

Generate new random
values for each simulation
by declaring rand
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('rand')
nr = rand
sg = a + (b-a)*nr

 Signal Generation Functions

3-53

Function Syntax Description Example
randn randn Normally distributed

pseudorandom values
Generate new random
values for each simulation
by declaring randn
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('randn')
nr = randn
sg = nr*2

exp exp(x) Returns the natural
exponential function, ex.

An exponential signal
progressing at one tenth
of the test step elapsed
time:

exp(et/10)

See Also
“Test Sequence and Assessment Syntax” on page 3-60 | Test Sequence

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-15
• “Actions and Transitions” on page 3-38

3 Test Sequences and Assessments

3-54

Programmatically Create a Test Sequence
This example shows how to create a test harness and test sequence using the
programmatic interface. You create a test harness and a Test Sequence block, and author
a test sequence to verify two functional attributes of a cruise control system.

Create a Test Harness Containing a Test Sequence Block

1. Load the model.

model = 'sltestCruiseChart';
load_system(fullfile(matlabroot,'examples','simulinktest','sltestCruiseChart'))

2. Create the test harness.

sltest.harness.create(model,'Name','Harness1',...
 'Source','Test Sequence')
sltest.harness.load(model,'Harness1');
set_param('Harness1','StopTime','15');

Author the Test Sequence

1. Add a local variable endTest and set the data type to boolean. You use endTest to
transition between test steps.

sltest.testsequence.addSymbol('Harness1/Test Sequence','endTest',...
 'Data','Local');

sltest.testsequence.editSymbol('Harness1/Test Sequence','endTest',...
 'DataType','boolean');

2. Change the name of the step Run to Initialize1.

sltest.testsequence.editStep('Harness1/Test Sequence','Run',...
 'Name','Initialize1');

3. Add a step BrakeTest. BrakeTest checks that the cruise control disengages when
the brake is applied. Add substeps defining the test scenario actions and verification.

sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest','Initialize1','Action','endTest = false;')

 % Add a transition from |Initialize1| to |BrakeTest|.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...

 Programmatically Create a Test Sequence

3-55

 'Initialize1','true','BrakeTest')

 % This sub-step enables the cruise control and sets the speed.
 % |SetValuesActions| is the actions for BrakeTest.SetValues.
 setValuesActions = sprintf('CruiseOnOff = true;\nSpeed = 50;');
 sltest.testsequence.addStep('Harness1/Test Sequence',...
 'BrakeTest.SetValues','Action',setValuesActions)

 % This sub-step engages the cruise control.
 setCCActions = sprintf('CoastSetSw = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Engage','BrakeTest.SetValues','Action',setCCActions)

 % This step applies the brake.
 brakeActions = sprintf('CoastSetSw = false;\nBrake = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Brake','BrakeTest.Engage','Action',brakeActions)

 % This step verifies that the cruise control is off.
 brakeVerifyActions = sprintf('verify(engaged == false)\nendTest = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'BrakeTest.Verify','BrakeTest.Brake','Action',brakeVerifyActions)

 % Add transitions between steps.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.SetValues','true','BrakeTest.Engage')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.Engage','after(2,sec)','BrakeTest.Brake')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest.Brake','true','BrakeTest.Verify')

4. Add a step Initialize2 to initialize component inputs. Add a transition from
BrakeTest to Initialize2.

init2Actions = sprintf(['CruiseOnOff = false;\n'...
 'Brake = false;\n'...
 'Speed = 0;\n'...
 'CoastSetSw = false;\n'...
 'AccelResSw = false;']);
sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'Initialize2','BrakeTest','Action',init2Actions)
sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'BrakeTest','endTest == true','Initialize2')

3 Test Sequences and Assessments

3-56

5. Add a step LimitTest. LimitTest checks that the cruise control disengages when
the vehicle speed exceeds the high limit. Add a transition from the Initialize2 step,
and add sub-steps to define the actions and verification.

sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest','Initialize2')
sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'Initialize2','true','LimitTest')

 % Add a step to enable cruise control and set the speed.
 setValuesActions2 = sprintf('CruiseOnOff = true;\nSpeed = 60;');
 sltest.testsequence.addStep('Harness1/Test Sequence',...
 'LimitTest.SetValues','Action',setValuesActions2)

 % Add a step to engage the cruise control.
 setCCActions = sprintf('CoastSetSw = true;');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.Engage','LimitTest.SetValues','Action',setCCActions)

 % Add a step to ramp the vehicle speed.
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.RampUp','LimitTest.Engage','Action','Speed = Speed + ramp(5*et);')

 % Add a step to verify that the cruise control is off.
 highLimVerifyActions = sprintf('verify(engaged == false)');
 sltest.testsequence.addStepAfter('Harness1/Test Sequence',...
 'LimitTest.VerifyHigh','LimitTest.RampUp','Action',highLimVerifyActions)

 % Add transitions between steps. The speed ramp transitions when the
 % vehicle speed exceeds 90.
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.SetValues','true','LimitTest.Engage')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.Engage','true','LimitTest.RampUp')
 sltest.testsequence.addTransition('Harness1/Test Sequence',...
 'LimitTest.RampUp','Speed > 90','LimitTest.VerifyHigh')

Open the test harness to view the test sequence.

sltest.harness.open(model,'Harness1');

 Programmatically Create a Test Sequence

3-57

Double-click the Test Sequence block to open the editor and view the test sequence.

3 Test Sequences and Assessments

3-58

Close the Test Harness and Model

sltest.harness.close(model,'Harness1');
close_system(model,0);

 Programmatically Create a Test Sequence

3-59

Test Sequence and Assessment Syntax

In this section...
“Assessment Statements” on page 3-60
“Temporal Operators” on page 3-62
“Transition Operators” on page 3-63
“Signal Generation Functions” on page 3-64
“Logical Operators” on page 3-67
“Relational Operators” on page 3-68

This topic describes syntax used within Test Sequence and Test Assessment blocks. You
use this syntax for test step actions, transitions, and assessments.

For information on using the command-line interface to create and edit test sequence
steps, transitions, and data symbols, see the functions listed under Test Sequences on
the “Test Scripts” page.

Test Sequence and Test Assessment blocks use MATLAB as the action language. You
define actions, transitions, and assessments with assessment operators, temporal
operators, transition operators, signal generation functions, logical operators, and
relational operators. For example:

• To output a square wave with a period of 10 sec:

square(et/10)

• To transition when h changes to 0:

hasChangedTo(h,0)

• To verify that x is greater than y:

verify(x > y)

Assessment Statements
To verify simulation, stop simulation, and return verification results, use assessment
statements.

3 Test Sequences and Assessments

3-60

Keywor
d

Statement Syntax Description Example

verify verify(expression)

verify(expression,
errorMessage)

verify(expression,
identifier,
errorMessage)

Assesses a logical
expression.
Optional
arguments label
results in the Test
Manager and
diagnostic viewer.

verify(x > y,...
'SimulinkTest:greaterThan',...
'x and y values are %d, %d',x,y)

assert assert(expression)

assert(expression,
errorMessage)

Evaluates a logical
expression.
Failure stops
simulation and
returns an error.
Optional
arguments return
an error message.

assert(h == 0 && k == 0,...
'h and k must initialize to 0')

Syntax in the table uses these arguments:

expression

Logical statement assessed

Examples:

h > 0 && k == 0

identifier

Label applied to results in the Test Manager

Value: String of the form aaa:bbb:...:zzz, with at least two colon-separated MATLAB
identifiers aaa, bbb, and zzz.

Examples:

'SimulinkTest:greaterThan'

 Test Sequence and Assessment Syntax

3-61

errorMessage

Label applied to messages in the diagnostic viewer

Value: String

Examples:

'x and y values are %d, %d',x,y

Temporal Operators
To create an expression that evaluates the simulation time, use temporal operators.
Variables used in signal conditions must be inputs, parameters, or constants in the Test
Sequence block.

Operato
r

Syntax Description Example

et et(TimeUnits) The elapsed time of the
test step in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the test
sequence step in milliseconds:

et(msec)

t t(TimeUnits) The elapsed time of the
simulation in
TimeUnits. Omitting
TimeUnits returns the
value in seconds.

The elapsed time of the
simulation in microseconds:

t(usec)

after after(n,
TimeUnits)

Returns true if n
specified units of time
in TimeUnits elapse
since the beginning of
the current test step.

After 4 seconds:

after(4,sec)

before before(n,
TimeUnits)

Returns true until n
specified units of time
in TimeUnits elapse,
beginning with the
current test step.

Before 4 seconds:

before(4,sec)

3 Test Sequences and Assessments

3-62

Operato
r

Syntax Description Example

duration ElapsedTime =
duration
(Condition,
TimeUnits)

Returns ElapsedTime
in TimeUnits for
which Condition has
been true.
ElapsedTime is reset
when the test step is re-
entered or when
Condition is no longer
true.

Return true if the time in
milliseconds since Phi > 1 is
greater than 550:

duration(Phi>1,msec) > 550

Syntax in the table uses these arguments:

TimeUnits

The units of time

Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs,
parameters, or constants, with at most one local or output data.

Examples:

u > 0
x <= 1.56

Transition Operators
To create expressions that evaluate signal events, use transition operators. Common
transition operators include:

 Test Sequence and Assessment Syntax

3-63

Operator Syntax Description Example
hasChanged hasChanged(u) Returns true if u

changes in value
since the beginning
of the test step,
otherwise returns
false.

u must be an input
data symbol.

Transition when h
changes:

hasChanged(h)

hasChangedFrom hasChangedFrom(u,A) Returns true if u
changes from the
value A, otherwise
returns false.

u must be an input
data symbol.

Transition when h
changes from 1:

hasChangedFrom(h,1)

hasChangedTo hasChangedTo(u,B) Returns true if u
changes to the value
B, otherwise returns
false.

u must be an input
data symbol.

Transition when h
changes to 0:

hasChangedTo(h,0)

Signal Generation Functions
Some signal generation functions use the temporal operator et, which is the elapsed time
of the test step in seconds. Scaling, rounding, and other approximations of argument
values can affect function outputs. Common signal generation functions include:

3 Test Sequences and Assessments

3-64

Function Syntax Description Example
square square(x) Represents a square wave

output with a period of 1
and range –1 to 1.

Within the interval 0 <=
x < 1, square(x)
returns the value 1 for 0
<= x < 0.5and –1 for
0.5 <= x < 1.

Output a square wave with
a period of 10 sec:

square(et/10)

sawtooth sawtooth(x) Represents a sawtooth
wave output with a period
of 1 and range –1 to 1.

Within the interval 0 <=
x < 1, sawtooth(x)
increases.

Output a sawtooth wave
with a period of 10 sec:

sawtooth(et/10)

triangle triangle(x) Represents a triangle
wave output with a period
of 1 and range –1 to 1.

Within the interval 0 <=
x < 0.5, triangle(x)
increases.

Output a triangle wave
with a period of 10 sec:

triangle(et/10)

ramp ramp(x) Represents a ramp signal
of slope 1, returning the
value of the ramp at time
x.

ramp(et) effectively
returns the elapsed time
of the test step.

Ramp one unit for every 5
seconds of test step
elapsed time:

ramp(et/5)

heaviside heaviside(x) Represents a heaviside
step signal, returning 0 for
x < 0 and 1 for x >= 0.

Output a heaviside signal
after 5 seconds:

heaviside(et-5)

 Test Sequence and Assessment Syntax

3-65

Function Syntax Description Example
latch latch(x) Saves the value of x at the

first time latch(x)
evaluates in a test step,
and subsequently returns
the saved value of x.
Resets the saved value of
x when the step exits.
Reevaluates latch(x)
when the step is next
active.

Latch b to the value of
torque:

b = latch(torque)

sin sin(x) Returns the sine of x,
where x is in radians.

A sine wave with a period
of 10 sec:

sin(et*2*pi/10)

cos cos(x) Returns the cosine of x,
where x is in radians.

A cosine wave with a
period of 10 sec:

cos(et*2*pi/10)

rand rand Uniformly distributed
pseudorandom values

Generate new random
values for each simulation
by declaring rand
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('rand')
nr = rand
sg = a + (b-a)*nr

3 Test Sequences and Assessments

3-66

Function Syntax Description Example
randn randn Normally distributed

pseudorandom values
Generate new random
values for each simulation
by declaring randn
extrinsic with
coder.extrinsic.
Assign the random
number to a local variable.
For example:

coder.extrinsic('randn')
nr = randn
sg = nr*2

exp exp(x) Returns the natural
exponential function, ex.

An exponential signal
progressing at one tenth
of the test step elapsed
time:

exp(et/10)

Logical Operators
You can use logical connectives in actions, transitions, and assessments. In these
examples, p and q represent Boolean signals or logical expressions.

Operation Syntax Description Example
Negation ~p not p verify(~p)
Conjunction p && q p and q verify(p && q)
Disjunction p || q p or q verify(p || q)
Implication ~p || q if p, q. Logically

equivalent to
implication p → q.

verify(~p || q)

Biconditional (p && q) || (~p
&& ~q)

p and q, or not p and
not q. Logically
equivalent to
biconditional p ↔ q.

verify((p && q)
|| (~p && ~q))

 Test Sequence and Assessment Syntax

3-67

Relational Operators
You can use relational operators in actions, transitions, and assessments. In these
examples, x and y represent numeric-type variables.

Using == or ~= operators in a verify statement returns a warning when comparing
floating-point data. Consider the precision limitations associated with floating-point
numbers when implementing verify statements. See “Floating-Point Numbers”
(MATLAB). If you use floating-point data, consider defining a tolerance for the
assessment. For example, instead of verify(x == 5), verify x within a tolerance of
0.001:

verify(abs(x-5) < 0.001)

Operator and Syntax Description Example
x > y Greater than verify(x > y)
x < y Less than verify(x < y)
x >= y Greater than or equal to verify(x >= y)
x <= y Less than or equal to verify(x <= y)
x == y Equal to verify(x == y)
x ~= y Not equal to verify(x ~= y)

See Also

Related Examples
• “Assess Model Simulation Using verify Statements” on page 3-15
• “Actions and Transitions” on page 3-38
• “Signal Generation Functions” on page 3-47
• “Programmatically Create a Test Sequence” on page 3-55

3 Test Sequences and Assessments

3-68

Debug a Test Sequence
In this section...
“View Test Step Execution During Simulation” on page 3-69
“Set Breakpoints to Enable Debugging” on page 3-69
“View Data Values During Simulation” on page 3-70
“Step Through Simulation” on page 3-71

You can debug a test sequence using tools in the Test Sequence Editor. Debugging
involves setting breakpoints to stop simulation, observing data and test sequence
progression, and manually stepping through test steps. You can try these features using
the model sltestTestSeqDebuggingExample. To open the model, enter

cd(fullfile(docroot,'toolbox','sltest','examples'))
open_system('sltestTestSeqDebuggingExample')

Save a copy of the model to a writable location on the MATLAB path. Double-click the
Test Sequence block to open the Test Sequence Editor.

View Test Step Execution During Simulation
By default, simulation animates the test sequence by highlighting active steps and
transitions. Observing test step execution can help you debug, particularly when manually
stepping through the test sequence. Adjust the animation speed using the Change

Animation Speed button in the toolbar.

Animation speed affects simulation speed. If you slow down animation speed for
debugging, return the speed to Fast or Lightning Fast when you finish debugging to
avoid slowing your simulation. If you do not need the test step highlights and want the
fastest simulation, choose None.

Set Breakpoints to Enable Debugging
You enable debugging for a test sequence by adding one or more breakpoints.
Breakpoints halt simulation every time the test step is evaluated. Therefore, breakpoints
on some test steps, such as When decomposition parent steps, halt simulation
repeatedly because the step is evaluated repeatedly. When simulation halts, you can view
data used in the test sequence to investigate the sequence simulation behavior.

 Debug a Test Sequence

3-69

You can add breakpoints to test step actions or transitions:

• To add a breakpoint to a test step action, right-click the test step and select Break
while executing step.

• To add a breakpoint to a test step transition, right-click the test step transition and
select Break when transition taken.

The editor displays a breakpoint marker. After adding breakpoints, simulate the test
sequence by clicking Run.

View Data Values During Simulation
If the simulation pauses (for example, at a breakpoint), you can view the status of data
used in a test step by hovering over the test step. The data values at the current
simulation time display next to the test sequence cell.

Note If you advance the simulation to another stop (for example, using the keyboard
shortcuts), the data display does not update. Move off the test step and then hover over
the step again to refresh the values.

3 Test Sequences and Assessments

3-70

Step Through Simulation
When simulation halts, you can step through the test sequence using the toolbar buttons.
Also see “Debugging and Breakpoints Keyboard Shortcuts” (Simulink).

Objective Details Toolbar Button
Simulate until
breakpoint

Simulation runs until the
next breakpoint

Step forward
through simulation
time

Simulation advances one
simulation step

Step forward
through test step
actions and
transitions

Simulation advances by
each step of a test
sequence, with pauses at
actions and transitions.
Does not step into a
function call.

Step in to a test step
group or called
function

Simulation advances into
the substeps of a parent
step and executes each
action and transition.
Steps into a function
call.

Step out of a test
step group or called
function

Simulation advances
through the remaining
substeps of a parent step
and then out to the
parent step hierarchy
level. Also finishes
execution of a function
call.

See Also
“Test Sequence Editor” on page 3-24 | Test Sequence

 See Also

3-71

Test Downshift Points of a Transmission Controller
This example demonstrates how to test a transmission shift logic controller using test
sequences and test assessments.

The Model and Controller

This example uses a simplified drivetrain system arranged in a controller-plant
configuration. The objective of the example is to test the transmission controller in
isolation, ensuring that it downshifts correctly.

The Test

The controller should downshift between each of its gear ratios in response to a ramped
throttle application. The test inputs hold vehicle speed constant while ramping the
throttle. The Test Assessment block includes requirements-based assessments of the
controller performance.

Open the Test Harness

Click the badge on the subsystem shift_controller and open the test harness
controller_harness. shift_controller is connected to a Test Sequence block and
a Test Assessment block.

3 Test Sequences and Assessments

3-72

The Test Sequence

Double-click the Test Sequence block to open the test sequence editor.

The test sequence begins by ramping speed to 75 to initialize the controller to fourth
gear. Throttle is then ramped at constant speed until a gear change. Subsequent
initialization and downshifts execute. After the change to first gear, the test sequence
stops.

 Test Downshift Points of a Transmission Controller

3-73

Test Assessments for the Controller

This example tests the following conditions:

• Speed shall never be negative.

3 Test Sequences and Assessments

3-74

• Gear shall always be positive.
• Throttle shall be between 0% and 100%.
• The shift controller shall keep the vehicle speed below specified maximums in each of

the first three gears.

Open the Test Assessment block. The assert statements correspond to the first three
conditions. If the controller violates one of the assertions, the simulation fails.

assert(speed >= 0, 'speed must be >= 0');
assert(throttle >= 0, 'throttle must be >= 0 and <= 100');
assert(throttle <= 100, 'throttle must be >= 0 and <= 100');
assert(gear > 0,'gear must be > 0');

The last condition is checked by three individual verify statements corresponding to the
maximum speed in gears 1, 2, and 3:

• The controller shall not let the vehicle speed exceed 90 in gear 3.
• The controller shall not let the vehicle speed exceed 50 in gear 2.
• The controller shall not let the vehicle speed exceed 30 in gear 1.

The verify statements are contained in a When decomposition sequence. The active
When decomposition step is determined by on signal conditions defined in the Step
column, with each condition preceded by the when operator. The last step Else covers
any undefined condition and does not use a when declaration. For more information on
When decomposition, see Test Sequence Editor.

OverSpeed3 when gear==3
verify(speed <= 90,'Engine overspeed in gear 3')

OverSpeed2 when gear==2
verify(speed <= 50,'Engine overspeed in gear 2')

OverSpeed1 when gear==1
verify(speed <= 30,'Engine overspeed in gear 1')

 Test Downshift Points of a Transmission Controller

3-75

https://www.mathworks.com/help/sltest/ug/test-sequence-editor.html

Testing the Controller

Simulating the test harness demonstrates the progressive throttle ramp at each test step
and the corresponding downshifts. The controller passes all of the assessments in the Test
Assessment block.

3 Test Sequences and Assessments

3-76

View the Results

Click the Simulation Data Inspector button in the test harness toolstrip to view the
results. You can compare the speed signal to the verify statement outputs.

 Test Downshift Points of a Transmission Controller

3-77

3 Test Sequences and Assessments

3-78

View Graphical Results From Model Verification Library
Simulink® Test™ outputs graphical results of the Model Verification block library so you
can use the Test Manager or Simulation Data Inspector to see when your test
assessments pass and fail.

In addition to warnings or stop-simulation behavior, the graphical results show the block
evaluation results during simulation. Viewing Model Verification block results graphically
helps you to:

• Determine the time step when a failure occurs.
• Debug the model by comparing the verification result with relevant signals.
• Trace failures from the results to the model.

This example shows how to view outputs from Model Verification blocks in the Test
Manager or Simulation Data Inspector.

Open the Model

The model contains a verification subsystem Safety Properties that uses an Assertion
block to check whether the system disengages if the brake has been applied for three
time steps. The verification subsystem also uses Simulink® Design Verifier™ blocks.

open_system(fullfile(matlabroot,'examples','simulinktest',...
 'sltestCruiseControlDefective'))

 View Graphical Results From Model Verification Library

3-79

Simulate the Model and View Results in SDI

sim('sltestCruiseControlDefective')

After the simulation completes, open SDI. The results show that the assertion failed at
0.23 seconds.

Simulink.sdi.view

3 Test Sequences and Assessments

3-80

Highlight Assertion Block in the Model

To find the assertion block in the model, right-click BrakeAssertion in SDI and select
Highlight in Model. The block is highlighted in the verification subsystem.

See Also
sltest.getAssessments

 See Also

3-81

Assess Temporal Logic Using Temporal Assessments
Hybrid systems with discrete and continuous time behavior can require complex timing-
dependent signal logic. Simulink Test enables you to assess model timing and event
ordering by authoring and including temporal assessments with test cases in the Test
Manager.

To work with temporal assessments:

1 Select an assessment template
2 Enter assessment conditions:

• Map symbols to model elements such as signals or to a time series or constant
• View assessment summary

3 Run the test case
4 Use the results to assess the system under test (SUT) against your requirements

As an example, consider a forced oscillation damping problem that has this requirement:

For a signal S, if the signal magnitude exceeds a value P, then within t seconds, it must
settle below a value Q and stay below Q for u seconds.

Create a Temporal Assessment
To create a temporal assessment:

3 Test Sequences and Assessments

3-82

1 Create or open a test case.
2 Navigate to the Logical and Temporal Assessments Editor.
3 Click Add Assessment. These assessment templates are available:

• Bounds Check – Check maximum and minimum bounds for signals and
expressions

• Trigger-Response – Check for a signal response when a trigger is detected
• Custom – Check if a logical expression holds true for all time steps

For this example, select Trigger-Response.

The Trigger-Response template appears. To finish creating the assessment, you define
temporal assessment conditions in the context of the SUT.

Define Temporal Assessment Conditions
A Trigger-response assessment requires:

• Trigger parameter

 Assess Temporal Logic Using Temporal Assessments

3-83

• Response parameter
• Optional Delay parameter

You can enter conditional statements as the trigger and response conditions. For the
forced oscillation damping problem:

1 Select whenever is true as the trigger and enter abs(S) > P as the condition. The
trigger condition is the condition pattern after which the response signal is
evaluated. The response condition is triggered when the magnitude of signal S
exceeds value P.

2 Select must stay true for at least as the response and enter abs(S) < Q and u as the
condition and min-time respectively. The response condition describes the
behavior of the SUT in response to the trigger condition. The response condition is
that the magnitude of signal S must settle below value Q and stay below Q for at least
u seconds.

3 Select with a delay of at most as the delay type and set t as the max-time
parameter. The delay is an optional time interval starting from a time reference
parameter to the point where the response condition is expected to be satisfied. The
delay is at most t seconds.

All time units are seconds.

When you add a symbol as part of a temporal assessment parameter in the Assessments
editor, it is added to the list of symbols as an unresolved symbol. Resolve symbols by
using the Symbols pane in the Assessments Editor.

Resolve Assessment Parameter Symbols

To resolve a symbol, right-click the symbol. Two options are available:

1 Map to model element – Use the mapping dialog box to map symbols to a signal/
parameter/block in the SUT.

Select a symbol to map from the drop-down list at the top of the mapping dialog.

3 Test Sequences and Assessments

3-84

After you finish mapping symbols to model elements, the Symbols pane displays
metadata that corresponds to the model element.

Signals mapped to a symbol used by an assessment in the editor are logged when you
run the test case.

If you map a bus or an array to a symbol, use the Field/Element row in the Symbols
pane to select a scalar signal from the bus or array. For example:

• If you want to map a symbol to a bus signal containing a bus element fieldA,
enter .fieldA.

• If you want to map a symbol to the signal element corresponding to index (5,5) in
a signal array, enter (5,5).

• You can combine both expressions as .fieldA(5,5).
2 Map to expression – Assign a scalar constant value or time series object to a

symbol.

You can use the simulation output as a variable to map symbols to signals. For
example, entering sltest_simout.logsout.get('mySignal') is equivalent to
using Map to model element to map symbols to a signal mySignal. See “Test-Case
Level Callbacks” on page 7-99 for more information.

Review Temporal Assessment Summary

After you enter the assessment parameters, click the arrow to the left of the Assessment
description to view the assessment summary.

The Visual Representation pane provides a graphical illustration of a passing case for
the assessment.

 Assess Temporal Logic Using Temporal Assessments

3-85

View Passing and Failing cases for the assessment by clicking the Explore Pattern
icon. Select the type of case you want to view (passing or failing) from the drop-down list

and click to view different passing and failing cases.

Evaluate the SUT
Run the test case to evaluate the SUT. Temporal assessments are evaluated after
simulation using logged signal data. Use the test case results to review the SUT against
your requirements.

View Assessment Results

View the results of the assessment evaluation from the Results and Artifacts pane of the
Test Manager. Select the test case and select the assessment in the Results tree to open
a new Assessment Result tab. Simulink Test evaluates the assessment and displays the
expected behavior and the actual result of the assessment execution with a description of
the assessment failures at different time steps.

Investigate the SUT behavior using the and buttons and the textual descriptions at
points of failure.

For a more detailed investigation, expand the Expression Tree to view results for every
individual element of the assessment.

3 Test Sequences and Assessments

3-86

Use the zoom, pan, and data cursor functionalities to analyze assessment evaluation
results in the Expression Tree.

Link Temporal Assessments to Requirements
If you have a Simulink Requirements license, you can establish traceability between
temporal assessments and requirements in Simulink Requirements by linking
assessments to requirements. To create links to requirements, select the assessment in
the editor and click the Requirements column to open the Requirement Editor dialog
box. See “Link to Requirements” on page 1-2 for more information.

See Also
“Temporal Assessment Parameters” on page 3-88

 See Also

3-87

Temporal Assessment Parameters
Simulink Test provides three temporal assessment templates:

• Logical Assessment Templates

• Bounds Check — Check maximum and minimum bounds for signals and
expressions.

• Custom — Check if a logical expression holds true for all time steps.
• Temporal Assessment Template

• Trigger-Response — Check for a signal response when a trigger is detected.

Bounds Check Assessments
Create bounds check assessments to check if the signals and expressions you test satisfy
the boundary condition patterns you specify for them. Boundary condition pattern
templates let you test if signals and expressions in terms of boundary values that you
specify are:

• Always less than (or equal to)
• Always greater than (or equal to)
• Always inside
• Always outside

3 Test Sequences and Assessments

3-88

Trigger-Response Assessments
Create trigger-response assessments to verify a signal response when a trigger is
detected. A trigger-response assessment requires:

• Trigger parameter
• Response parameter
• Optional Delay parameter

The trigger condition is the condition pattern based on which the response signal is
evaluated. There are five trigger condition patterns available:

Trigger Condition Pattern Behavior Available Time
References

Whenever is true Check the response
signal continuously
whenever the
triggering condition
is true.

N/A

Becomes true Check the response
signal every time the
triggering condition
becomes true.

Rising edge

Becomes true and
stays true for at
least

Check the response
signal every time the
triggering condition
becomes true and
stays true for at least
the interval specified
by the min-time
parameter (in s). You
also specify an
additional time
reference parameter
at which to evaluate
the response signal.

Rising edge of
trigger or end of
min-time

 Temporal Assessment Parameters

3-89

Trigger Condition Pattern Behavior Available Time
References

Becomes true and
stays true for at
most

Check the response
signal every time the
triggering condition
becomes true and
stays true for at most
the interval specified
by the max-time
parameter (in s). You
also specify an
additional time
reference parameter
at which to evaluate
the response signal.

Rising or falling edge
of trigger or end of
max-time

Becomes true and
stays true for
between

Check the response
signal every time the
triggering condition
becomes true and
stays true between
the interval specified
by the min-time
and max-time
parameters. You also
specify an additional
time reference
parameter at which
to evaluate the
response signal.

Rising or falling edge
of the trigger or end
of min-time or
max-time

To complete authoring a trigger-response assessment, you specify the response condition
pattern and the response condition. There are five response condition patterns available:

3 Test Sequences and Assessments

3-90

Response Condition Pattern Behavior
Must be true The response condition

pattern must be true
starting from the time
reference parameter to the
delay (if it is defined).

Must stay true for at least The response condition
pattern must stay true for at
least the duration specified
by the min-time parameter.

Must stay true for at
most

The response condition
pattern must stay true for at
most the duration specified
by the max-time parameter.

Must stay true for
between

The response condition
pattern must stay true for at
least the duration specified
by the min-time parameter
and at most the duration
specified by the max-time
parameter.

Must stay true until The response condition must
stay true until the until-
condition parameter
becomes true within the
duration specified by the
max-time parameter.

The delay is an optional time interval starting from the time reference parameter to the
point where the response condition is expected to be satisfied. You can set the delay to a
maximum value or specify a time range in seconds.

Custom Assessments
The custom assessments template allows you to specify logical MATLAB expressions that
do not fit in previous templates. Assessments are meant to evaluate signal properties, so
all symbols defined in a custom template must be mapped to signal data (model element
or timeseries or a constant scalar value).

 Temporal Assessment Parameters

3-91

See Also
“Assess Temporal Logic Using Temporal Assessments” on page 3-82

3 Test Sequences and Assessments

3-92

Observers

4

Access Model Data Wirelessly by Using Observers
In this section...
“Observer Reference Block” on page 4-3
“Connect Signals by Using an Observer Port Block” on page 4-5
“Simulate a System Model with an Observer Reference Block” on page 4-7
“Verify Heat Pump Temperature by Using Observers” on page 4-7
“Convert Verification Subsystem to an Observer Reference” on page 4-11
“Declutter a System Model by Using an Observer Reference Block” on page 4-11

Observers allow you to you monitor the dynamic response of your system model while
preserving the system model design and system result integrity. Observers are the
Observer Reference block and the Observer Port block. The Observer Reference block
wirelessly links a system model to an Observer model, which houses a verification
subsystem. Inside an Observer model, you use Observer Port blocks to send signals from
the system model to the verification subsystem.

4 Observers

4-2

Observer Reference Block
The Observer Reference block does not have inports or outports. You map your
Simulinksignals to Observer Port blocks, which are contained within the Observer model.
The Observer Port blocks are mapped to output data from your system model. Once the
Observer Port blocks are mapped to a signal, you connect that signal line to the
verification subsystem within the Observer model. Running your system model also
causes the linked Observer model to run.

This wireless access allows you to use Observers to monitor your system model without
causing changes to the system. Observers allow you to create a clear differentiation
between your system design and verification subsystems.

For your Observer model to simulate, do not:

 Access Model Data Wirelessly by Using Observers

4-3

• Use a library model as an Observer model
• Include an Observer Reference block within an Observer model
• Reference the system model that contains the Observer Reference block from the

Observer Reference block
• Use root inports within an Observer model
• Generate code from a system model that includes an Observer Reference model

Add an Observer Reference Block

The Observer Reference block references a separate verification model that you use to
verify your system model. To add an Observer Reference block to your system model,
right-click the top level of your Simulink canvas. In the contextual menu, select
Observers > Add Observer here.

An Observer Reference block is added to your system model, and an Observer model is
created. You must save the Observer model in a directory on the MATLAB path.

Connect an Existing Observer Model

To connect an Observer Reference block to an Observer model that you have already
created, first save your Observer model in a directory on the MATLAB path. Next, open
the Observer Reference block parameters by right-clicking the Observer Reference block.
Select Block Parameters (ObserverReference).

4 Observers

4-4

Enter the name of the Observer model that you want to connect to your system and select
Apply. When you double click your Observer Reference block, your Observer model
opens in a new window.

Create an Observer Model from Signal Lines

To create an Observer model that is mapped to a signal line in your model, select and
right-click on one or more signals that you want to verify. Select Observers > Observe
Selected Signals > New Observer. Simulink creates a new Observer model and adds an
Observer Reference block to your system model.

Connect Signals by Using an Observer Port Block
Each Observer Reference block contains one or more Observer Port blocks. After
mapping an Observer Port block to an object or signal within a system model, the
Observer Port block outputs the same output as its mapped object.

A new Observer Port block shows a line through the signal symbol, signifying that the
block is not mapped to a signal.

 Access Model Data Wirelessly by Using Observers

4-5

Observer Dialog Box

To map an Observer Port block to a signal on your system model, select Analysis >
Observers > Manage Observer.... This opens the Observer Dialog box. Within the
Observer Dialog box you can:

• Filter and select signals for observation
• Add, remove, or configure Observer Port blocks
• Trace signals

On the left-hand side of the Observer Dialog box is the Observable Area pane. The
Observable Area pane displays the block hierarchy and observable outputs of your model.
Observed signals appear bold in the hierarchy.

The right hand side of the Observer Dialog box shows the Observer pane. The Observer
pane displays the block hierarchy within the Observer Reference block. An Observer Port
block that is mapped to a signal appears bold and displays the signal to which it is
attached. Once the Observer Port is mapped to a signal, the symbol updates to show that
the Observer Port is attached to a signal.

To view the full path of an observed object, hover your cursor over the Observer Port
block.

If you change the name of an observed signal in your system model, the Observer
Reference block updates the name of the output signal from the Observer Port block. If a
signal is not named and does not have a label, the output of the Observer Port block is set
to an empty string.

Map an Observer Port Block to a Signal

To map a signal to an Observer Port block, open the Observer Dialog box. In the
Observable Area pane, select the signal that you want to observe. You can map the signal
to an existing Observer Port block by redirect Observer Port icon. You can also map the
signal to a new Observer Port block by selecting the add new Observer Port icon. You can
then connect the signal to a verification subsystem to test your results.

4 Observers

4-6

Simulate a System Model with an Observer Reference Block
The Observer model is used to monitor signals in your system model and checks that your
system model is running within specified parameters. With or without an Observer
Reference block, your system model simulation results are the same. The Observer
Reference block does not affect the compilation of your system model and supports only
normal simulation mode. The Observer Reference block supports multiple execution
rates, continuous dynamics, and zero crossings.

Before running a system model that includes an Observer Reference block, configure your
system model and your Observer model to use a fixed-step solver. See “Choose a Fixed-
Step Solver” (Simulink). Set the simulation mode for both to normal. These signal types
are supported:

• Scalar
• Wide
• Nonvirtual buses
• Continuous
• Zero-Order Hold
• Discrete

Verify Heat Pump Temperature by Using Observers
This example shows how to use an Observer Reference block to wirelessly observe signals
and verify results. In this system, the plant is modeled using Simulink, and the controller
is modeled using Stateflow. The goal of the example is to monitor the temperature of the
heat pump as well as when the pump is cooling or heating the room. Cooling and heating
are denoted by which direction the fan is blowing. The data name is pump_dir, and it is
connected to port 3 in the Stateflow chart.

To open this example, enter:

cd(fullfile(docroot,'toolbox','sltest','examples'))
open_system('sltestHeatpumpExample')

 Access Model Data Wirelessly by Using Observers

4-7

To create a new Observer model to measure the temperature of the pump, open the plant
model and highlight the signal T. Right-click the hightlighted signal and select Observers

4 Observers

4-8

> Observe selected signals > New Observer. Simulink adds an Observer Reference
block to your system model and creates a new Observer model called
sltestHeatpumpExample_Observer1. The Observer model contains an Observer Port
block that is mapped to the signal T. Save the new Observer model in the same directory
that contains the heat pump model.

Add a second Observer Port block to your Observer model. Double-click the Observer Port
to open the Observer Dialog. In the Observer pane, the second Observer Port,
ObserverPort1, is listed below the first port.

To map the second ObserverPort1 to the Simulink data pump_dir, click on
ObserverPort1 and Outport3. Once both are highlighted, click the Reconfigure button

.

 Access Model Data Wirelessly by Using Observers

4-9

The two Observer Port blocks are now both mapped to the signals and are ready to be
connected to scopes or a verification subsystem.

4 Observers

4-10

Convert Verification Subsystem to an Observer Reference
To convert a verification subsystem to an Observer Reference block, right-click the
verification subsystem. Select Observers > Move selected block to Observer > New
Observer. This operation can not be undone.

Declutter a System Model by Using an Observer Reference
Block
In this example, a cruise control system generates the trottle and the target speed. The
Safety Properties block is a verification subsystem that verifies the safety of the cruise
control system.

 Access Model Data Wirelessly by Using Observers

4-11

By converting the verification subsystem to an Observer Reference block, you remove the
signals that link the verification subsystem to the system model while preserving the
ability to test the integrity of the system.

4 Observers

4-12

The two signals, throt and output1, are automatically mapped to two Observer Port
blocks within the Observer model,
sltestBasicCruiseControlHarnessModel_Observer1.

 Access Model Data Wirelessly by Using Observers

4-13

See Also

More About
• Observer Port
• Observer Reference

4 Observers

4-14

Test Harness Software- and
Processor-in-the-Loop

• “SIL Verification for a Subsystem” on page 5-2
• “Test Integrated Code” on page 5-7

5

SIL Verification for a Subsystem
In this section...
“Create a SIL Verification Harness for a Controller” on page 5-2
“Configure and Simulate a SIL Verification Harness” on page 5-4
“Compare the SIL Block and Model Controller Outputs” on page 5-5

This example shows subsystem verification by ensuring the output of software-in-the-loop
(SIL) code matches that of the model subsystem. You generate a SIL verification harness,
collect simulation results, and compare the results using the simulation data inspector.
You can apply a similar process for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host
computer. Additionally, with PIL simulation, you can verify the compiled object code that
you intend to deploy in production. You can run the PIL object code on real target
hardware or on an instruction set simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode
for model verification. You can compare the SIL or PIL block results with the model
results and collect metrics, including execution time and code coverage. Using the test
harness to perform SIL and PIL verification, you can:

• Manage the harness with your model. Generating the test harness generates the SIL
block. The test harness is associated with the component under verification. You can
save the test harness with the main model.

• Use built-in tools for these test-design-test workflows:

• Checking the SIL or PIL block equivalence
• Updating the SIL or PIL block to the latest model design

• View and compare logged data and signals using the Test Manager and Simulation
Data Inspector.

This example models a closed-loop controller-plant system. The controller regulates the
plant output.

Create a SIL Verification Harness for a Controller
Create a SIL verification harness using data that you log from a controller subsystem
model simulation. You need an Embedded Coder license for this example.

5 Test Harness Software- and Processor-in-the-Loop

5-2

1 Open the example model by entering

rtwdemo_sil_block

at the MATLAB command prompt,

2 Save a copy of the model using the name controller_model in a new folder, in a
writable location on the MATLAB path.

3 Enable signal logging for the model. At the command prompt, enter

set_param(bdroot,'SignalLogging','on','SignalLoggingName',...
'SIL_signals','SignalLoggingSaveFormat','Dataset')

4 Right-click the signal into Controller port In1, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller_model_input.
Select Log signal data and click OK.

 SIL Verification for a Subsystem

5-3

5 Right-click the signal out of Controller port Out1, and select Properties. In the
Signal Properties dialog box, for the Signal name, enter
controller_model_output. Select Log signal data and click OK.

6 Simulate the model.
7 Get the logged signals from the simulation output into the workspace. At the

command prompt, enter

out_data = out.get('SIL_signals');
control_in1 = out_data.get('controller_model_input');
control_out1 = out_data.get('controller_model_output');

8 Create the software-in-the-loop test harness. Right-click the Controller subsystem
and select Test Harness > Create Test Harness (Controller).

9 Set the harness properties:

• Name: SIL_harness
• Sources and Sinks: Inport and Outport
• Select Open harness after creation
• Advanced Properties – Verification Mode: Software-in-the-loop (SIL)

Click OK. The resulting test harness has a SIL block.

Configure and Simulate a SIL Verification Harness
Configure and simulate a SIL verification harness for a controller subsystem.

1 Configure the test harness to import the logged controller input values. From the top
level of the test harness, in the model Configuration Parameters dialog box, in the

5 Test Harness Software- and Processor-in-the-Loop

5-4

Data Import/Export pane, select Input. Enter control_in1.Values as the input
and click OK.

2 Enable signal logging for the test harness. At the command prompt, enter

set_param('SIL_harness','SignalLogging','on','SignalLoggingName',...
'harness_signals','SignalLoggingSaveFormat','Dataset')

3 Right-click the output signal of the SIL block and select Properties. In the Signal
Properties dialog box, for the Signal name, enter SIL_block_out. Select Log
signal data and click OK.

4 Simulate the harness.

Compare the SIL Block and Model Controller Outputs
Compare the outputs for a verification harness and a controller subsystem.

1 In the test harness model, click the Simulation Data Inspector button to open the
Simulation Data Inspector.

2 In the Simulation Data Inspector, click Import. In the Import dialog box.

• Set Import from to: Base workspace.
• Set Import to to: New Run.
• Under Data to import, select Signal Name to import data from all sources.

3 Click Import.
4 Select the SIL_block_out and controller_model_out signals in the Runs pane

of the data inspector window.

The chart displays the two signals, which overlap. This result suggests equivalence
for the SIL code. You can plot signal differences using the Compare tab in SDI, and
perform more detailed analyses for verification. For more information, see “Compare
Simulation Data” (Simulink).

 SIL Verification for a Subsystem

5-5

5 Close the test harness window. You return to the main model. The badge on the
Controller block indicates that the SIL harness is associated with the subsystem.

See Also

More About
• “Control Generation of Functions for Subsystems” (Simulink Coder)
• “Configure and Run SIL Simulation” (Embedded Coder)

5 Test Harness Software- and Processor-in-the-Loop

5-6

Test Integrated Code
In this section...
“Test Integrated C Code” on page 5-7
“Test Code in S-Functions” on page 5-8
“S-Function Testing Example” on page 5-8

Test Integrated C Code
If you have a model that integrates C code with a C Caller block, you can test the C code
with the Test Manager and a test harness. For an example, see “C Code Verification with
Simulink Test”.

The C Caller block uses configuration parameters to define the custom code. If you
change the configuration parameters, synchronize the parameters between the test
harness and the model. For more information, see “Synchronize Changes Between Test
Harness and Model” on page 2-53 and “Create Test Harnesses and Select Properties” on
page 2-13.

• If you change the test harness configuration parameters, you can push the
configuration set to the main model. Select Analysis > Test Harness > Push
Component and Parameters to Main Model, or use sltest.harness.push.

• If you change the main model configuration parameters in the main model, and you
want to update the test harness parameters, the test harness must copy the
configuration parameters on rebuild. You can set this property in two ways:

• When you create the test harness, in the Advanced Properties, select Update
Configuration Parameters and Model Workspace data on rebuild.

• For existing test harnesses, in the harness preview, click the Harness operations
icon to open the harness properties. In the harness properties, select Update
Configuration Parameters and Model Workspace data on rebuild.

 Test Integrated Code

5-7

Test Code in S-Functions
S-Functions are computer language descriptions of Simulink blocks written in MATLAB,
C, C++ or Fortran. You can test code wrapped in S-Functions using Simulink Test test
harnesses. Testing code in S-Functions can be helpful for regression testing of legacy
code and for testing your code in a system context.

S-Function Testing Example
In this example, you test code in an S-Function block using a test harness. The main
model is a controller-plant model of an air conditioning/heat pump unit. Before you begin,
change the default working folder to one with write permissions.

Note This example works only on a 64–bit Windows® platform.

Set Up the Working Environment

1 Add the example folder to the MATLAB path, and set the example file names.

ep = fullfile(docroot,'toolbox','sltest','examples');
addpath(ep);

md = 'sltestHeatpumpSfunExample.slx'
cb = 'sltestHeatpumpBusPostLoadFcn.mat'
dt = 'PumpDirection.m'

2 Open the model.

open_system(fullfile(ep,md))

5 Test Harness Software- and Processor-in-the-Loop

5-8

In the example model:

• The controller is an S-Function that accepts room temperature and specified
temperature inputs.

• The controller output is a bus with signals that control the fan, heat pump, and the
direction of the heat pump (heat or cool).

• The plant accepts the control bus. The heat pump and the fan signals are Boolean, and
the heat pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating
state with fan, pump, and pump direction signal outputs.

Temperature Condition Syste
m
State

Fan
Comman
d

Pump
Comman
d

Pump
Direction

|Troom_in - Tset| < DeltaT_fan idle 0 0 0
DeltaT_fan <= |Troom_in - Tset| <
DeltaT_pump

fan only 1 0 0

 Test Integrated Code

5-9

Temperature Condition Syste
m
State

Fan
Comman
d

Pump
Comman
d

Pump
Direction

|Troom_in - Tset| >= DeltaT_pump
and Tset < Troom_in

cooling 1 1 -1

|Troom_in - Tset| >= DeltaT_pump
and Tset > Troom_in

heating 1 1 1

Create a Test Case

1 Open the Test Manager by selecting Analysis > Test Manager from the Simulink
menu.

2 From the Test Manager toolstrip, click New to create a test file. Name and save the
test file.

3
In the test case, under System Under Test , click the button to load the current
model into the test case.

Create a Test Harness

1 In the model, right-click the Controller_sfcn subsystem and select Test Harness
> Create for ‘Controller_sfcn’.

2 Set the harness properties.

In the Basic Properties tab:

• Set Name to test_harness_1
• Set Sources and Sinks to None and Scope

3 Click OK to create the test harness.
4 In the test case, under System Under Test, refresh the test harness list and select

test_harness_1 for the Harness.

Add Inputs and Set Simulation Parameters

Create inputs in the test harness, with a constant Tset and a time-varying Troom_in.

1 Connect a Constant block to the Tset input and set the value to 75.
2 Add a Sine Wave block to the harness model to simulate a temperature signal.

Connect the Sine Wave block to the conversion subsystem input Troom_in.
3 Double-click the Sine Wave block and set the parameters:

5 Test Harness Software- and Processor-in-the-Loop

5-10

Parameter Value
Amplitude 15
Bias 75
Frequency 2*pi/3600
Phase (rad) 0
Sample time 1

Select Interpret vector parameters as 1–D.

4 In the Solver pane of the Simulink toolstrip, set Stop time to 3600.

Obtain Baseline Data

1 In the test case, in Simulation Outputs, click Add. Highlight the output bus from
the controller S-Function.

2 In the Signal Selection dialog box, click the Add button.

 Test Integrated Code

5-11

3 Under Baseline Criteria, click Capture to record a baseline data set from
simulating the test harness. Save the baseline data set to the working folder. The
baseline signals appear in the table.

Run the Test Case and View Results

1 Run the test case. The test results appear in the Results and Artifacts pane.

5 Test Harness Software- and Processor-in-the-Loop

5-12

2 Expand the results to view the baseline criteria result. The baseline test passes
because the simulation output is identical to the baseline data.

 Test Integrated Code

5-13

Simulink Test Manager Introduction

6

Functional Testing for Verification

In this section...
“Test Authoring” on page 6-3
“Test Generation” on page 6-3
“Test Execution” on page 6-4
“Reporting” on page 6-4

You can use Simulink Test to author, manage, and execute tests for Simulink models and
generated code. You can author tests from scratch, import existing test data and harness
models, and organize tests using the Test Manager. You can execute tests in model,
software-in-the-loop (SIL), processor-in-the-loop (PIL), and hardware-in-the-loop (HIL)
modes, control parameters, and iterate over parametric values. You can run test cases
individually, in batch, or as a filtered subset of the test file. You can also run the same
tests back-to-back in multiple releases of MATLAB.

Results include a concise pass/fail summary for elements in your test hierarchy, including
iterations, test cases, test suites, and the test file. Visualization tools help you drill down
into individual data sets to determine, for example, the time and cause of a particular
failure. Coverage results from Simulink Coverage help quantify the extent to which your
model or code is tested.

For example, you can:

• Compare results between your model and generated code by running back-to-back
equivalence tests between different environments, such as model simulation, SIL, PIL,
and HIL execution.

• Optimize your model or code by iterating over parametric values or configuration
parameters.

• Start testing on a unit level by using test harnesses, and reuse those tests as you scale
up to the integration and system level.

• Run models that contain test vectors and assessments inside the Simulink block
diagram.

Simulink Test includes a comprehensive programmatic interface for writing test scripts,
and Simulink tests can be integrated with MATLAB tests using MATLAB Unit Test.

6 Simulink Test Manager Introduction

6-2

Test Authoring
When you author a test, you define test inputs, signals of interest, signal pass/fail
tolerances, iterations over parametric values, and assessments for simulation behavior.
You can author test input vectors in several ways:

• Graphically, such as with the Signal Editor
• From datasets, such as using Excel® or MAT files
• As a sequence of test steps that progresses according to time or logical conditions

You can define assessments to indicate when functional requirements are not met. These
assessments follow from your design requirements or your test plan. You can define
assessments in several ways:

• With a structured assessment language. The structured language helps you assess
complex timing behavior, such as two events that must happen within a certain time
frame. It also helps you identify conflicts between requirements.

• With verify statements in a Test Assessment or Test Sequence block. For information
on how to set up the blocks in your model, see “Assess Model Simulation Using verify
Statements” on page 3-15.

• With blocks in the Model Verification block library.
• With tolerances you set on the simulation data output. Tolerances define the

acceptable delta from baseline data or another simulation.
• With a custom criteria script that you author using MATLAB.

You can use existing test data and test models with Simulink Test. For example, if you
have data from field testing, you can test your model or code by mapping the data to your
test case. If you have existing test models that use Model Verification blocks, you can
organize those tests and manage results in the Test Manager.

Test Generation
Using Simulink Design Verifier, you can generate test cases that achieve test objectives or
increase model or code coverage. You can generate test cases from the Test Manager, or
from the Simulink Design Verifier interface. Either way, you can include the generated
test cases with your original tests to create a test file that achieves complete coverage.
You can also link the new test cases to additional requirements.

 Functional Testing for Verification

6-3

Test Execution
You can control test execution modes from the Test Manager. For example, you can:

• Run tests in multiple releases of MATLAB. Multiple release testing allows you to
leverage recent test data while executing your model in its production version.

• Run back-to-back tests to verify generated code. You can run the same test in model,
SIL, and PIL mode and compare numeric results to demonstrate code-model
equivalence.

• Run HIL tests to verify systems running on real-time hardware using Simulink Real-
Time™, including verify statements in your model that help you determine whether
functional requirements are met.

• Decrease test time by running tests in parallel using the Parallel Computing Toolbox™,
or running a filtered subset of your entire test file.

Reporting
When reporting your test results, you can set report properties that match your
development environments. For example, reporting can depend on whether tests passed
or failed, and reports can include data plots, coverage results, and requirements linked to
your test cases. You can create and store custom MATLAB figures that render with a
report. Reporting options persist with your test file, so they run every time you execute a
test.

A MATLAB Report Generator™ license adds additional customization options, including:

• Creating reports from a Microsoft® Word or PDF template
• Assembling reports using custom objects that aggregate individual results

See Also

Related Examples
• “Create and Run a Baseline Test”
• “Inputs”
• “Test Execution”

6 Simulink Test Manager Introduction

6-4

Test Manager Test Cases

• “Manage Test File Dependencies” on page 7-2
• “Compare Model Output To Baseline Data” on page 7-9
• “Test a Simulation for Run-Time Errors” on page 7-13
• “Automatically Create a Set of Test Cases” on page 7-16
• “Generate Tests for a Subsystem” on page 7-22
• “Synchronize Tests” on page 7-24
• “Run Tests Using External Data” on page 7-25
• “Test Case Input Data Files” on page 7-34
• “Capture Simulation Data in a Test Case” on page 7-49
• “Run Tests in Multiple Releases” on page 7-55
• “Examine Test Failures and Modify Baselines” on page 7-60
• “Create and Run Test Cases with Scripts” on page 7-66
• “Test Iterations” on page 7-71
• “Collect Coverage in Tests” on page 7-83
• “Run Tests Using Parallel Execution” on page 7-88
• “Set Signal Tolerances” on page 7-90
• “Test Sections” on page 7-95
• “Increase Coverage by Generating Test Inputs” on page 7-106
• “Process Test Results with Custom Scripts” on page 7-111
• “Create, Store, and Open MATLAB Figures” on page 7-122
• “Test Models Using MATLAB Unit Test” on page 7-125
• “Output Results for Continuous Integration Systems” on page 7-129
• “Filter Test Execution and Results” on page 7-135

7

Manage Test File Dependencies
In this section...
“Package a Test File Using Simulink Projects” on page 7-2
“Find Test File Dependencies and Impact” on page 7-4
“Share a Test File with Dependencies” on page 7-8

You can help track and manage your test file dependencies by creating a Simulink Project
for your test file and the files it depends on. Examples of test file dependencies include
requirements, data files, callbacks, test harnesses, and custom criteria scripts. Packaging
test file dependencies in a Simulink Project also helps you share tests with other users.

Package a Test File Using Simulink Projects
1 In the Test Browser, right-click the test file.
2 Select Simulink Project > Create Project from Test File.

Simulink Projects opens and identifies the file dependencies of the test file. In this
example, the test file contains a test case with a requirements link, an input file, and
a baseline file.

7 Test Manager Test Cases

7-2

3 Specify project name, and verify the list of selected file dependencies.
4 Click Create.

 Manage Test File Dependencies

7-3

Find Test File Dependencies and Impact
You can find test file dependencies from the Test Browser. Your test file must be saved in a
Simulink project.

1 Right-click the test file. Select Simulink Project > Find Dependencies.

7 Test Manager Test Cases

7-4

Dependencies are color coded in the file dependency graph.

 Manage Test File Dependencies

7-5

If you want to change a model or requirement, you can determine the potential impact of
the change on your tests.

1 In the dependency graph, select the item that could impact your tests.
2 In the Simulink Projects toolstrip, click Files > Files Impacted by Selection.

7 Test Manager Test Cases

7-6

If you want to run a test file again, then you can right-click the test file in the graph and
select Run. The Test Manager opens the test file and runs the test cases contained in it.

 Manage Test File Dependencies

7-7

Share a Test File with Dependencies
You can easily share test files that are already saved in a Simulink Project. If you send the
project folder, then it contains the file dependencies for the test file.

See Also

Related Examples
• “What Are Projects?” (Simulink)

7 Test Manager Test Cases

7-8

Compare Model Output To Baseline Data
To test the simulation output of a model against a defined baseline, use a baseline test
case. In this example, use the sldemo_absbrake model to compare the simulation
output to a baseline captured from an earlier state of the model.

Create the Test Case
1 Open the sldemo_absbrake model.
2 To open the Test Manager from the model, select Analysis > Test Manager.
3 From the Test Manager toolstrip, click New to create a test file. Name and save the

test file.

The test file consists of a test suite that contains one baseline test case. They appear
in the Test Browser pane.

4 Right-click the baseline test case in the Test Browser pane, and select Rename.
Rename the test case to Slip Baseline Test.

5
Under System Under Test in the test case, click the Use current model button
to load the sldemo_absbrake model into the test case.

6 To record a baseline from the system under test, under Baseline Criteria, click
Capture.

7 In the Capture Baseline dialog box, for the file format, select Excel. Specify a
location to save the baseline to and click Capture.

8 The baseline criteria file and the logged signals appear in the table. Set the Absolute
Tolerance of the Ww signal to 15.

Tip To add or remove columns in the baseline criteria table, click the column selector
button .

 Compare Model Output To Baseline Data

7-9

For more information about tolerances and criteria, see “Set Signal Tolerances” on page
7-90.

Run the Test Case and View Results
1 In the sldemo_absbrake model, set the Desired relative slip constant block to

0.22.
2 In the Test Manager, select the Slip Baseline Test case in the Test Browser pane.
3 On the Test Manager toolstrip, click Run.

In the Results and Artifacts pane, the new test result appears at the top of the
table.

4 Expand the results until you see the baseline criteria result. Right-click the result and
select Expand All Under.

The signal yout.Ww passes, but the overall baseline test fails because other signal
comparisons specified in the Baseline Criteria section of the test case were not
satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria,
expand Baseline Criteria Result and click the option button next to the
yout.Ww signal.

The Comparison tab opens and shows the criteria comparisons for the yout.Ww
signal and the tolerance.

7 Test Manager Test Cases

7-10

6 You can also view signal data from the simulation. Expand Sim Output and select
the signals you want to plot.

 Compare Model Output To Baseline Data

7-11

The Visualize tab opens and plots the simulation output.

For information on how to export results and generate reports from results, see “Export
Test Results and Generate Reports” on page 8-9.

See Also

Related Examples
• “Set Signal Tolerances” on page 7-90
• “Capture Baseline Criteria” on page 7-102
• “Run Tests in Multiple Releases” on page 7-55

7 Test Manager Test Cases

7-12

Test a Simulation for Run-Time Errors
In this example, use a simulation test case with the sldemo_absbrake model to test for
simulation run-time errors.

Configure the Model
Configure the model to check if the stopping distance exceeds an upper bound.

1 Open the model sldemo_absbrake.
2 Add the Check Static Upper Bound block from the Model Verification library to the

model.
3 Connect the Check Static Upper Bound block to the Sd signal.

4 In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

 Test a Simulation for Run-Time Errors

7-13

Create the Test Case
1 To open the Test Manager, from the model, select Analysis > Test Manager.
2 To create a test file, click New. Name and save the test file.

The new test file consists of a test suite that contains one baseline test case. They
appear in the Test Browser pane.

3 Select New > Simulation Test.
4 Right-click the new simulation test case in the Test Browser pane, and select

Rename. Rename the test case to Upper Bound Test.
5

In the test case, under System Under Test, click the Use current model button
to assign the sldemo_absbrake model to the test case.

6 Under Parameter Overrides, click Add to add a parameter set.
7

In the dialog box, click the Refresh button to update the model parameter list.
8 Select the check box next to the workspace variable m. Click OK.
9 Double-click the Override Value and enter 55.

This value overrides the parameter value in the model when the simulation runs.

Note To restore the default value of a parameter, clear the value in the Override
Value column and press Enter.

Run the Test Case
1 In the Test Browser pane, select the Upper Bound Test case.
2 In the Test Manager toolstrip, click Run. The test results appear in the Results and

Artifacts pane.

7 Test Manager Test Cases

7-14

View Test Results
1 Expand the test results, and double-click Upper Bound Test.

A new tab displays the outcome and results summary of the simulation test.
2 The result indicates a test failure. In this case, the stopping distance exceeded the

upper bound of 725 and triggered an assertion from the Check Static Upper Bound
block. The Errors section contains the assertion details.

See Also

More About
• “Run Tests in Multiple Releases” on page 7-55

 See Also

7-15

Automatically Create a Set of Test Cases
In this section...
“Creating Test Cases from Model Elements” on page 7-16
“Generating Test Cases from a Model” on page 7-16

Creating Test Cases from Model Elements
You can automatically create a set of test cases that correspond to blocks and test
harnesses in your model. You specify whether the test cases are baseline, equivalence, or
simulation test cases. To automatically create test cases, your model must contain either
or both of the following:

• One Signal Editor or Signal Builder block at the model's top level. One test case is
created for each scenario or signal group in the block.

• Test harnesses. If a test harness contains one (and only one) Signal Editor or Signal
Builder block at the top level, a test case is created for each scenario or signal group
in the block.

To automatically create test cases for your model:

1 In the Test Manager, select New > Test File > Test File from Model.
2 In the dialog box, select the model that you want to generate test cases from. The

model must be on the MATLAB path.
3 Select the test case type, and click Create.

Generating Test Cases from a Model
Generate test cases based on model hierarchy.

This example shows how to generate test cases based on the components in your model.
This example uses the model sltestTestManagerCreateTestsExample, which has
been pre-configured with the following:

• Signal Builder group in the top model
• Test harnesses in the top model
• Signal Builder group at the top level of a test harness

7 Test Manager Test Cases

7-16

Open the Model and Test Manager

Execute the following code to open the model configured with different components such
as Signal Builder groups and test harnesses.

mdl = 'sltestTestManagerCreateTestsExample';
open_system(mdl);

Open the Test Manager. From the Simulink® menu, click Analysis > Test Manager.

Generate Test Cases From the Model

In the Test Manager, click the New arrow and select Test File > Test File from Model.

 Automatically Create a Set of Test Cases

7-17

1 In the New Test File dialog box, click the Use current model button. to specify
sltestTestManagerCreateTestsExample as the Model.

2 Specify the Location of the test file.
3 Select the Baseline from the Test Type dropdown. All test cases generated will be

of the test type specified here.
4 Click Create.

7 Test Manager Test Cases

7-18

The test manager creates a test case for each of the following:

• Signal Builder groups in the top model
• Test harnesses in the top model
• Signal Builder group at the top level of a test harnesses

In each generated test case, you need to specify the comparison criteria, equivalence or
baseline, before you run the test.

 Automatically Create a Set of Test Cases

7-19

7 Test Manager Test Cases

7-20

close_system(mdl, 0);
clear mdl;

See Also

More About
• “Synchronize Tests” on page 7-24
• “Test Sections” on page 7-95
• “Compare Model Output To Baseline Data” on page 7-9
• “Test a Simulation for Run-Time Errors” on page 7-13
• “Test Two Simulations for Equivalence”
• “Generate Tests for a Subsystem” on page 7-22

 See Also

7-21

Generate Tests for a Subsystem
Use the Test Manager to generate a test case for a subsystem. You can create a baseline,
equivalence, or simulation test case. Generating the test case:

• Creates a test harness for the subsystem. The test harness provides a separate
simulation environment from the main model.

• Simulates the main model and captures the subsystem input data from the main model
simulation.

• For baseline tests, captures output data in a MAT-file or Microsoft Excel file. The
output is the test case baseline data.

• Adds the input and output files to the test case.

After you create the test case, configure the test case if you need additional options such
as coverage or reports.

You add a generated test case for a subsystem to a test file. If you need a test file to add
the test case to, create one.

• Select the test file before you generate the test to add a test suite containing the test
case.

• Select a test suite before you generate the test case to add the test case to the test
suite. Or, select a test case in a test suite to add the test case to the test suite.

Generate the Subsystem Test Case
You can save the input data to a MAT-file or Excel file. When creating a baseline test,
selecting Excel saves the input and output data in the same file. For more information on
using Excel files in Test Manager, see “Format Test Case Data in Excel” on page 7-38.

1 In the model that contains the subsystem that you want to create the test for, select
the subsystem.

2 In Test Manager, select the test file or test suite that you want to create the test case
in, and then select New > Test for Subsystem.

3
In the dialog box, click the Use currently selected subsystem button to fill in
the Subsystem and Top model fields.

4 Select the test type—baseline, equivalence, or simulation—and specify the file format.

7 Test Manager Test Cases

7-22

5 Depending on the test type and the file format, you can specify the location for your
inputs and your baseline outputs and the sheet name for Excel data.

6 Click Create. Test Manager adds a test harness to the subsystem and simulates the
model.

After simulation completes, the test case includes inputs and, for baselines, outputs.

• For equivalence tests, inputs are added to the test case in the Inputs section
under Simulation 1.

• For simulation tests, inputs are added under Inputs.
• For baseline tests, inputs are added under Inputs and outputs are added under

Baseline Criteria.
7 Finish configuring the harness and test case for your test scenario.
8 Save the model and the test case.

See Also

More About
• “Test Sections” on page 7-95
• “Compare Model Output To Baseline Data” on page 7-9
• “Test a Simulation for Run-Time Errors” on page 7-13
• “Test Two Simulations for Equivalence”
• “Automatically Create a Set of Test Cases” on page 7-16

 See Also

7-23

Synchronize Tests
If you change the system under test, you can synchronize the test cases to reflect the
model changes. Also, if you remove model components, you can disable or delete test
cases in the Test Manager when you synchronize.

Synchronizing your test file automatically creates a new test case for:

• Each new scenario in the Signal Editor block at the top level of your model and the top
level of each test harness. The model must have only one Signal Editor block at those
levels to create a test case.

• Each new signal group in the Signal Builder block at the top level of your model and
the top level of each harness. Your model must have only one Signal Block at those
levels to create a test case.

• Each new test harness in the model.

To synchronize your test file:

1 In the Test Manager Test Browser pane, hover over the test file name that you want
to update.

2 Click the synchronization button next to the test file name.
3 Follow the prompts to specify:

• The type of test file to create for the new components
• Whether to disable or delete out-of-date components

Disabled tests appear in the list in italic.

See Also

More About
• “Automatically Create a Set of Test Cases” on page 7-16

7 Test Manager Test Cases

7-24

Run Tests Using External Data
In this section...
“Mapping Status” on page 7-25
“Create a Test Case from an Excel Spreadsheet” on page 7-26
“Import an Excel Spreadsheet into a Test Case” on page 7-27
“Add Microsoft Excel File as Input” on page 7-28
“Importing Microsoft® Excel® Data” on page 7-28
“Add a MAT-File as an External Input” on page 7-32

You can run test cases using data defined in external MAT-files or Microsoft Excel files.
You can map the data to your model (system under test [SUT]) using these mapping
modes:

• The names of the inport block the signal data corresponds to
• The full block path name, that is, in the form system/block
• The name of the signal associated with the inport block
• Port number, that is, sequential port numbers of the inport blocks, starting at 1

You can add multiple external input files to a test case. After you add the files, select the
one you want to use in the test case from the External Inputs table. If you are using test
iterations, you can assign one input file to each iteration.

For more information about how Simulink handles inport mapping, see “Map Root Inport
Signal Data” (Simulink).

Mapping Status
When you map external inputs to model elements, the mapping can create these possible
results. These results appear under Inputs in the Test Manager interface in the Status
column:

• Mapped — The mapping succeeded and no further action is needed.
• Failed — The mapping failed. Click the Failed link for more information.
• Warning — The mapping occurred with warnings. Click the Warning link to see

whether you need to address them

 Run Tests Using External Data

7-25

• Stale — This status can occur when you update your external inputs in Test Manager.
A stale state occurs if you did not map the new inputs. To address this status, click the
Status link, which opens the Add Input dialog box. Click Map Inputs to map the new
input data and then click Add.

Create a Test Case from an Excel Spreadsheet
You can create a test case in Test Manager using the Create Test from Spreadsheet
wizard. From Simulink Test Manager, select New > Test from Spreadsheet. Select Use
existing test data from a spreadsheet and follow the prompts. You can use the
following spreadsheet and model as an example:

<matlabroot>\examples\simulinktest\coordinate_tests.xlsx
coordinate_transform_test.slx

In the Attributes page, make sure all attribute categories that exist in the spreadsheet
are displayed. Click Validate to map each input to the model by block name. If necessary,
make changes to the spreadsheet and/or SUT and click Refresh and validate again. After
a successful validation, save the test.

• The test case imports the spreadsheet. The fields defined in the spreadsheet are
locked to the spreadsheet, and cannot be edited in the Test Manager.

7 Test Manager Test Cases

7-26

To change the locked fields, edit the spreadsheet outside of MATLAB.

Import an Excel Spreadsheet into a Test Case
If you have a test case and want to add test data to it from Excel spreadsheet, you must
associate it with the spreadsheet:

1 Open the test case.
2 Check the Create Test Case from External File option.
3 Browse for the spreadsheet with the test data.

 Run Tests Using External Data

7-27

The input, parameter, and comparison signal data in the spreadsheet overrides the data in
the test case. The fields defined in the spreadsheet are locked to the spreadsheet. To edit,
do one of the following:

• Edit the spreadsheet outside of MATLAB and click Refresh for the File field.
• Clear the Create Test Case from External File option and edit the test case in the

Test Manager. Note that selecting this option again causes values in the spreadsheet
to overwrite the values in the test.

Add Microsoft Excel File as Input
You can import Microsoft Excel spreadsheets to use as inputs. You can import multiple
sheets at once and specify a range of data. Selecting sheets and specifying ranges is
useful when each sheet contains a different data set or the same file contains input data
and expected outputs.

For information about the Excel file format, see “Format Test Case Data in Excel” on page
7-38.

1 In the test case, expand the Inputs section and click Add.
2 Browse to your Microsoft Excel file and click Add.
3 Select each sheet that contains input data. You can specify a range of data.
4 If you want to use each sheet to create an input set in the table, select Create

scenarios from each sheet.
5 Under Input Mapping, select a mapping mode.
6 Click Map Inputs. The Mapping Status table shows the port and signal mapping.

For more information about troubleshooting the mapping, see “Understand Mapping
Results” (Simulink).

7 Click Add.

Importing Microsoft® Excel® Data
Test a model using inputs stored in Microsoft Excel.

This example shows how to create a test case in the Test Manager and map data to the
test case from a Microsoft® Excel® file. Input mapping supports Microsoft Excel
spreadsheets only for Microsoft Windows®.

7 Test Manager Test Cases

7-28

Create a Test File

1. Open the Test Manager. Enter

sltest.testmanager.view

2. In the Test Manager toolbar, select New > Test File. Save the file to a writable
directory. The Test Manager creates a test file with an empty baseline test case.

3. In the test browser, select the test case. In the test editor, under the System Under
Test section, enter sltestExcelExample.

Configure the External Inputs.

1. Expand the Inputs section of the test case.

2. To include the input data in the test results, click Include external inputs/signal
builder data in test result.

3. Under the External Inputs table, click Add.

4. In the Add Input dialog box, for File, select the sltestExampleInputs.xlsx from
the matlab/toolbox/simulinktest/simulinktestdemos directory.

5. In the Add Input dialog box,

• Select the Acceleration sheet from the sheets table.
• Select Mapping Mode : Block Name.
• Click Map Inputs.
• Click Add.

 Run Tests Using External Data

7-29

The Mapping Mode controls the method used to map data from the Microsoft Excel
sheet to root-level Inport blocks in the model. For more information, see Use External
Inputs in Test Cases.

The test case shows the inputs mapped.

7 Test Manager Test Cases

7-30

Run the Test

1. In the toolbar, click Run.

2. In the Results and Artifacts pane, you can plot signals from the external inputs or the
simulation output.

 Run Tests Using External Data

7-31

Add a MAT-File as an External Input
1 In the test case, expand the Inputs section and click Add.
2 Browse to the MAT-file and click Add.
3 Under Input Mapping, choose a mapping mode.

7 Test Manager Test Cases

7-32

4 Click Map Inputs. The Mapping Status table shows the port and signal mapping.

For information about troubleshooting the mapping status, see “Understand Mapping
Results” (Simulink).

5 Click Add.

See Also
sltest.testmanager.TestInput

More About
• “Map Signal Data to Root Inports” (Simulink)
• “Map Root Inport Signal Data” (Simulink)
• “Test Case Input Data Files” on page 7-34

 See Also

7-33

Test Case Input Data Files
You can use Test Manager to create MAT-file and Microsoft Excel data files to use as
inputs to test cases. You generate a template that contains the signal names and the
times, and then enter the data.

Creating a data file also adds the file to the list of available input files for the test case.
After you add input data, you can then select the file to use in your test case.

You can create files for input data only for tests that run in the current release. To select
the release, in the test case, use the Select releases for simulation list.

You can edit input files. After you create the template, select the file from the list of input
files and click Edit. MAT-files open in the signal editor. Excel files open in Excel.

Selecting the Add an iteration that runs this input check box adds an iteration to the
test case under Table Iterations and assigns the input file to it. After you create the
input file, continue to specify the iteration. For more information on iterations, see “Test
Iterations” on page 7-71.

Generate an Excel Template
You can generate a template test spreadsheet from a model or harness (system under test
[SUT]). You can then complete the spreadsheet with external data and import it into
Simulink Test as a test case.

The Create Test from Spreadsheet wizard parses the SUT for test attributes and
automatically generates a template spreadsheet and a test case:

• Inputs — Inputs are characterized by root input ports
• Parameters — Named parameters in the model
• Comparison signals — Logged signals and output ports

The wizard allows you to filter and edit the attributes needed for testing. The resulting
spreadsheet has separate column sets for inputs, parameters, and comparison signals. If
multiple iterations are required, a separate sheet in the same file is generated for each
scenario. You can expand the spreadsheet to add time-based signal data, tolerances, and
parameter overrides. See “Format Test Case Data in Excel” on page 7-38 for the full
description of the format readable by Simulink Test.

7 Test Manager Test Cases

7-34

You can use the model coordinate_transform_test as an example for the process.
The model must be on the MATLAB path.

1 Open the test manager using Analysis > Test Manager.
2 Open the wizard. From Simulink Test Manager, select New > Test from

Spreadsheet. Select Create a test template file for specifying data and follow
the prompts.

3 In the Attributes page, select which attribute categories are to be included in the
spreadsheet. For example, if parameter overrides are not necessary for the tests,
clear Parameters. The attribute categories shown on the page are derived from the
SUT. Comparison signals are always shown.

4 If the test requires all attributes in a category as is, select Yes, include all
attributes in the spreadsheet and click Next. If not, select No, I want to filter
and edit the attributes. This shows a page with a tab for each attribute category.

5 If you are filtering the attributes, in the Parameters and Comparison tabs, clear the
attributes that are not needed. For example, you can remove a logged signal from
this list if it is not to be used for comparison in the tests.

6 Optionally change tolerances in the Comparison page. The tolerance settings apply
to all signals in the list. To specify different tolerances for each signal, edit the
spreadsheet after it is generated.

 Test Case Input Data Files

7-35

If you change the SUT during the selection process, click Refresh to synchronize the
attribute lists with the SUT. Once selection is complete, click Next and keep
following the prompts.

7 In the Scenarios page, specify the number of test scenarios and a base name for the
sheets in the spreadsheet.

If comparison signals are selected, the wizard runs the model to capture the baseline.
Make sure that the model does not run indefinitely by setting a finite stop time. The
wizard creates two files:

• Excel spreadsheet — The spreadsheet includes columns for inputs, parameters, and
comparison signals. Inputs and comparisons have different time bases. An identical
sheet for each test scenario is generated. Complete the spreadsheet outside MATLAB
to uniquely define each scenario.

7 Test Manager Test Cases

7-36

• Test file — The test case imports the Excel spreadsheet. The fields defined in the
spreadsheet are locked to the spreadsheet, and cannot be edited in the Test Manager.

 Test Case Input Data Files

7-37

To change the locked fields, edit the spreadsheet outside MATLAB.If you change a
parameter, you must capture the baseline again by clicking the Capture button.

Format Test Case Data in Excel
You can specify signal data in a Microsoft Excel file to use as input to your test case or as
baseline criteria (outputs). The Excel file includes time and signal data. To support a
range of models and configurations, you can specify signal data of most data types. For
exceptions, see “Limitations” on page 7-47. You can indicate whether signals are scalar,
multidimensional, or complex. You can optionally specify the data type, block path and
port index, units, interpolation type, and function-call execution times.

Basic Excel File Format

The figure shows the basic format of the Excel file. This example uses scalar signals and
the default data type, double, for all signals.

7 Test Manager Test Cases

7-38

• When specifying time and signal data (and not function-call execution times), the time
column is the first column. Time values must increase in value, and every cell must
contain a value. .

• Include one column for each input signal in the first row. In each column, include the
signal data for each time point. Signal names are case-sensitive.

• If dataset elements have different time vectors, the spreadsheet can have more than
one time column. In this case, the columns to the right of each time column, up to the
next time column, define signals along that time vector. The signal columns must have
the same number of rows as the time column they define values for. The figure shows
an example that has a time column for each time vector.

When you import data, you specify the mapping mode. To map using signal or block
names, add the block or signal names and qualifiers in the first row. If you are mapping
using block path and name, also specify them in the optional rows (see “Block Path and
Port Index” on page 7-43). If you are mapping using port numbers, signal columns map
to the model ports in order during import, ignoring the block or signal names.

Input and Output Data

You can save inputs and outputs in the same Excel file in the same sheet. Specify whether
the signals are for inputs or outputs in one of the optional rows, using Source:Input or
Source:Output as the label. Keep all the inputs together and all the outputs together.

 Test Case Input Data Files

7-39

To import the file as input data, use the Inputs section of the test case, described in “Run
Tests Using External Data” on page 7-25. To use the Excel file as expected outputs, select
it to add as baseline data, in the Baseline Criteria section of the test case, described in
“Baseline Criteria” on page 7-102.

When you capture inputs and expected outputs in Test Manager, you can save inputs and
outputs to the same Excel file. Both sets of data are saved to the same sheet unless you
specify a different sheet. Saving the inputs or expected outputs adds the file to the test.
See “Capture Baseline Criteria” on page 7-102.

Parameters

You can save parameter override values in the same Excel file in the same sheet. Specify
the name of the parameter in the Parameter: column and the override value in the
Value: column. Each row corresponds to a parameter. Enter vector and matrix
parameters as you would in MATLAB. You can also use MATLAB expressions for
parameter values. Values are read as strings and are evaluated at runtime. Signal data
and parameter data start on the same row.

The Parameter column must precede the Value column and both columns are required.
For a parameter in a masked subsystem, add a third column MaskBlockPath and enter
the path to the block.

7 Test Manager Test Cases

7-40

Signal Tolerances

You can specify tolerances for comparison signals in the Excel file. It is possible to define
one or more tolerance types for each signal, in any order. Prefix the tolerance value with
one of: AbsTol:, RelTol:, LeadingTol:, LaggingTol:. The format is
<ToleranceType>:<ToleranceValue>.

Tolerances are interpreted as floating-point doubles. Each tolerance type should be in a
dedicated row. Once a row is declared to be a certain type of tolerance, all columns in
that row must be of that type. An empty cell is treated as tolerance of zero. For more
information on tolerances, see “Compare Model Output To Baseline Data” on page 7-9.

Simulation for Equivalence Tests

When you perform equivalence tests in Test Manager, you compare the results of two
simulations. If your Excel input file is for an equivalence test, you can specify the inputs
for each simulation. Specify the simulation in one of the optional rows, using
Simulation:1 or Simulation: 2 as the label. Keep the inputs for each simulation
together.

 Test Case Input Data Files

7-41

Scalar, Multidimensional, Complex, and Bus Signals

In addition to scalar signal names, you can indicate multidimensional, complex, and bus
signals, or a combination of these. The figure shows some examples.

Specify block paths, and optionally, port index in one of the optional rows. See “Block
Path and Port Index” on page 7-43.

Base Name

Names are case-sensitive.

Multidimensional Signals

Use parentheses with the signal dimension after the signal name. For example:

• mySignal(1,3)

Dimensions on the signal that you do not specify default to zeros of the same data type
and complexity as the dimensions that you specify.

Complex Signals

For complex signals, use (real) or (imag) with the signal name. For example:

• mySignal (real)
• mySignal (imag)
• mySignal(1,3) (imag)

7 Test Manager Test Cases

7-42

If you do not specify a real counterpart to an imaginary number, the real value defaults to
zeros.

Bus Signals

Specify bus signals in the form signalname.busElement.nestedElement for as many
nested elements as the bus has. For example:

• myBusSignal.x
• busSignal2.x.z

Suppose the inport block myBus is a bus object with this structure:

In this case, specify the signal as myBus.a.w.

The figure shows an example of specifying bus signals with a bus data type (see “Data
Type” on page 7-44). The BusObj data type also applies to the columns to the right
because the base name for these signals is the same.

Block Path and Port Index

If you want to specify the signal using the block path, enter it in one of the optional rows
in the form BlockPath: path to block. When you specify a block path, you can also
specify the block port index. The default port index is 1. Enter the port index in the row
following the block path in the form PortIndex: port number. For example:

 Test Case Input Data Files

7-43

• BlockPath: mymodel/myblock
• PortIndex: 2

Data Type, Unit, Interpolation, and Block Path/Port Index

In the optional rows between the signal name and the time and signal data, you can
include any combination of information about the signal:

• Data type
• Units
• Interpolation
• Block path and port index (see “Block Path and Port Index” on page 7-43)

Data Type

Enter data types in the row after the signal name. The default data type is double.

You can mix data types in the same row, but you must use the same data type for all
columns of a multidimensional or complex signal.

You can leave the columns to the right of the data type declaration empty if that data type
applies to the signal data in those columns. For example, here the data type int16
applies to columns B and C because they are dimensions of the same signal.

7 Test Manager Test Cases

7-44

Built-In MATLAB Data Types

Specify built-in MATLAB data types supported in Simulink in the form Type: data type.
See “Data Types Supported by Simulink” (Simulink). For example:

• Type: int16
• Type: uint32

Enumerations

Specify an enumeration data type in the form Enum: class. For example:

• Enum: school

The data in the cells correspond to enumerated values. For example:

Enum data type dimensions that do not have data default to the default enumeration
value.

Fixed Point

Indicate a fixed-point data type using the prefix Fixdt:, followed by the data type in one
of these forms:

• A fixdt constructor, for example, Fixdt: fixdt(1,16).
• A unique data type name string, for example, Fixdt: sfix16_B7. To learn about

specifying data type names, see “Fixed-Point Data Type and Scaling Notation” (Fixed-
Point Designer).

• A numerictype object in the base workspace, for example, Fixdt: mytype.

Bus

Specify the bus object in the form Bus: bus object with a bus signal. For example:

 Test Case Input Data Files

7-45

• Bus: BusObject1

To specify a bus signal, see “Bus Signals” on page 7-43.

Alias

Specify an alias data type in the form Alias: alias type. To learn about alias data
types, see Simulink.AliasType.

Units

Optionally, include a row for units. Specify units in the form Unit: units. You can
specify units and physical quantity. For example:

• Unit: g
• Unit: kg@mass

Interpolation

Optionally, include a row for interpolation. The default is linear. Specify interpolation as
Interp: zoh or Interp: linear.

Synchronization

Optionally, include a row for synchronization. The default is union. Specify
synchronization as Sync: union or Sync: intersection.

Function-Call Execution Times

If the model contains control signals for function-call subsystems, add columns for each
one before the first time column. Enter the control signal name in the column heading.
Enter the points of time when you want to execute the function call in the column.

Function-call execution times that you specify are independent of the times in the time
column. The figure shows how to format two function-call blocks that execute at various
times. The time and signal data and data type information are independent of the
function-call information.

7 Test Manager Test Cases

7-46

Limitations

Arrays of buses as a data type are not supported.

Create a MAT-File for Input Data
1 In the test case, under System Under Test, specify the model whose input data you

want to create a MAT-file for.
2 In the Inputs section of the test case, click Create.
3 In the dialog box, set the file format to MAT-file. Specify the location for the MAT-

file and click Create.

The signal editor opens.
4 In the Scenarios and Signals pane of the signal editor, expand the data node. Then

select the signal whose data you want to add.
5 Specify the signal data. Select the data type from the list, and enter the time and

signal data for the signal.

 Test Case Input Data Files

7-47

6 To update your signal data, click Apply.
7 After adding the signal data, click Save.

See Also
sltest.testmanager.BaselineCriteria | sltest.testmanager.TestInput

More About
• “Run Tests Using External Data” on page 7-25
• “Select Releases for Testing” on page 7-95
• “Run Tests Using External Data” on page 7-25
• “Baseline Criteria” on page 7-102

7 Test Manager Test Cases

7-48

Capture Simulation Data in a Test Case
Capture signal data in your test results by adding signals to the Simulation Outputs
section of the test case. Each output is called a logged signal. Signals listed in
Simulation Outputs appear in the test results along with signals that are already
selected for logging in Simulink.

You can use logged signals for data comparison in baseline criteria, equivalence criteria,
custom criteria, and for data visualization in the Simulation Data Inspector. Logged
signals enable you to further test your Simulink model without changing the model. In
addition to signals from the top model, you can also log signals from subsystems and
model references. You can select signals associated with local and global data store
memory, and from data store memory that uses a Simulink.Signal object.

Add Logged Signals in the Test Manager
To add signals:

1 Open the model sltestFlutterSuppressionSystemExample.
2 Under Simulation Outputs, click Add.
3 In the system under test, highlight blocks or signals that you want to log. To select

multiple items, click and drag a selection box over multiple items.
4 A dialog box appears. Select signals in the dialog box.

 Capture Simulation Data in a Test Case

7-49

5 Continue adding signals to the test case. Each time you select a signal, the dialog box
also shows previously logged signals. You can remove a signal from logging by
clearing the selection.

6 The signals appear in the Logged Signals table in the test case.

7 To add a signal set, click the Add arrow and select Signal Set.

7 Test Manager Test Cases

7-50

8 To specify a specific plot for a signal, enter a number in the Plot Index column. By
default, the signals appear on one plot.

You can specify to display the plot immediately after running the test by selecting the
Plot signals on the specified plots after simulation check box.

After you run the test, the logged signals appear in the test case results under Sim
Output. Select each signal to display on the plot. If you specify a plot index, the signal
appears in the plot number you specified.

Capture Data from Local and Global Data Stores
Perform similar steps to add simulation output associated with data store memory:

1 Open the model sldemo_mdlref_dsm, which contains local and global data store
memory.

2 In a test case, from the top model, add the Sine Wave block for logging.
3 Click on the Data Store Read block in the top model. Click on the click to update

diagram box. The dialog box displays the signal associated with the block and the
data associated with the Simulink.Signal object in the base workspace. The model
displays the signal storage class for the block, (global).

 Capture Simulation Data in a Test Case

7-51

4 Select both signals in the dialog box.
5 Double-click the model reference sldemo_mdlref_dsm_bot to open it, and then

open the subsystem PositiveSS. Select the Data Store Write block. The table
displays the input signal from the Gain block and the data store memory,
RefSignalVal.

7 Test Manager Test Cases

7-52

6 Select the RefSignalVal data store memory for logging. The dialog box uses a
different icon to indicate the data store memory.

7 Finish selecting signals by clicking Done in the Test Manager window. In the Test
manager, the signals appear under Logged Signals. The Source column displays the
full path information for each signal. For the signal associated with the
Simulink.Signal object, Source displays the workspace location of the
Simulink.Signal object.

 Capture Simulation Data in a Test Case

7-53

See Also
Simulink.Signal | sltest.testmanager.LoggedSignal |
sltest.testmanager.LoggedSignalSet | sltest.testmanager.TestCase

More About
• “Assess Simulation and Compare Output Data” on page 3-10
• “Compare Model Output To Baseline Data” on page 7-9

7 Test Manager Test Cases

7-54

Run Tests in Multiple Releases
If you have more than one release of MATLAB installed, you can run tests in multiple
releases. This option lets you run tests in releases that do not have Simulink Test, starting
with R2011b.

While you can run test cases on models in previous releases, the release you run the test
in must support the features of the test. If, for example, your test involves test harnesses
or test sequences, the release must support those features for the test to run.

Before you can create tests that use additional releases, add them to your list of available
releases using Test Manager preferences. See “Add Releases Using Test Manager
Preferences” on page 7-56.

Considerations for Testing in Multiple Releases
Testing Models in Previous or Later Releases

Your model or test harness must be compatible with the MATLAB version running your
test.

• If you have a model created in a newer version of MATLAB, to test the model in a
previous version of MATLAB, export the model to a previous version and simulate the
exported model with the previous MATLAB version. For more information, see the
information on exporting a model in “Save a Model” (Simulink).

• To test a model in a more recent version of MATLAB, consider using the Upgrade
Advisor to upgrade your model for the more recent release. For more information, see
“Consult the Upgrade Advisor” (Simulink).

Test Case Compatibility with Previous Releases

When performing testing in multiple releases, the MATLAB version must support the
features of your test case. Previous MATLAB versions do not support test case features
unavailable in that release. For example:

• Test harnesses are supported for R2015a and later.
• The Test Sequence block is supported for R2015a and later.
• verify() statements are supported for R2016b and later.

 Run Tests in Multiple Releases

7-55

Test Case Limitations with Multiple Release Testing

Certain features are not supported for multiple release testing:

• Parallel test execution
• Running test cases with the MATLAB Unit Test framework
• Real-time tests
• Input data defined in an external Excel document
• Coverage collection in the Test Manager
• Generating additional tests using Simulink Design Verifier to increase coverage
• Including custom figures from test case callbacks

Add Releases Using Test Manager Preferences
Use a Test Manager preference to add to the list of release to run tests in. You can delete
a release that you added to the list. You cannot delete the release from which you are
running Test Manager.

1 In the Test Manager toolstrip, click Preferences.
2 In the Preferences dialog box, click Release. The Release pane lists the release you

are running Test Manager from.
3 In the Release pane, click Add.
4 Browse to the location of the MATLAB release you want to add and click OK.

Run Baseline Tests in Multiple Releases
When you run a baseline test with Test Manager set up for multiple releases, you can:

• Create the baseline in the release you want to see the results in, for example, to try
different parameters and apply tolerances.

• Create the baseline in one release and run it in another release. Using this approach
you can, for example, know whether a newer release produces the same simulation
outputs as an earlier release.

Create the baseline.

1 Make sure that the release has been added to your Test Manager preferences.

7 Test Manager Test Cases

7-56

2 Create a test file, if necessary, and add a baseline test case to it.
3 In the test case, from the Select release for simulation list, select the releases you

want to run the test case in.
4 Under System Under Test, enter the name of the model you want to test.
5 Set up the rest of the test.
6 Capture the baseline. Under Baseline Criteria, click Capture.
7 Select the release you want to use for the baseline simulation. Specify the file format

and save and name the baseline.

For more information about capturing baselines, see “Capture Baseline Criteria” on page
7-102.

After you create the baseline, you can run the test in a release available in the Test
Manager. Each release you select generates a set of results.

1 In the test case, set Select releases for simulation to the releases you want to use
to compare against your baseline. For example, select only the release for which you
created the baseline to perform a baseline comparison against the same release.

2 Specify the test options.
3 From the toolstrip, click Run.

For each release that you select when you run the test case, pass-fail results appear
in the Results and Artifacts pane. For results from a release other than the one you
are running Test Manager from, the release number appears in the name.

Run Equivalence Tests in Multiple Releases
When you run an equivalence test, you compare two simulations from the same release to
see if differences in the simulations are within the specified tolerance.

 Run Tests in Multiple Releases

7-57

1 Make sure that the release has been added to your Test Manager preferences.
2 Create a test file, if necessary, and add an equivalence test case to it.
3 In the test case, from the Select release for simulation list, select the releases you

want to run the test case in.
4 Under System Under Test, enter the model you want to test.
5 Set the values under Simulation 1 and Simulation 2 to use as the basis for testing.
6 To set tolerances for the logged signals, under Equivalence Criteria, click Capture.

Select the release you want to use for capturing the signals, and click OK. Clicking
Capture copies the list of the signals being logged in Simulation 1. Then set the
tolerances as desired.

7 In the toolstrip, click Run.

The test runs for each release you selected, running the two simulations in the same
release and comparing the results for equivalence. For each release that you selected
when you ran the test case, pass-fail results appear in the Results and Artifacts
pane. For results from a release other than the one you are running Test Manager
from, the release number appears in the name.

Run Simulation Tests in Multiple Releases
Running a simulation test simulates the model in each release you select using the
criteria you specify in the test case.

1 Make sure that the release has been added to your Test Manager preferences.
2 Create a test file, if necessary, and add a simulation test case template to it.
3 In the test case, from the Select release for simulation list, select the releases you

want to run the test case in.
4 Under System Under Test, enter the model you want to test.

7 Test Manager Test Cases

7-58

5 Under Simulation Outputs, select the signals to log.
6 In the toolstrip, click Run.

The test runs, simulating for each release you selected. For each release, pass-fail
results appear in the Results and Artifacts pane. For results from a release other
than the one you are running Test Manager from, the release number appears in the
name.

See Also
sltest.testmanager.getpref | sltest.testmanager.setpref

More About
• “Select Releases for Testing” on page 7-95

 See Also

7-59

Examine Test Failures and Modify Baselines
After you run a baseline test in the Test Manager, you can update the baseline. For
example:

• If you changed your model, you can use the new simulation output as the baseline. You
can examine the failures that occurred because of the differences and update the
baseline with part or all of the new output. See “Examine Test Failure Signals and
Update Baseline Test” on page 7-60.

• If your test plan changed and you expect different outputs, you can manually edit the
time points. See “Manually Update Signal Data in a Baseline” on page 7-63.

Examine Test Failure Signals and Update Baseline Test
Suppose that you run a test against a baseline and the result does not match the baseline,
causing test failure. It is possible that the newer simulation better represents your
desired test results or that some of the points of failure are your preferred results. You
can examine the signal and failures in the data inspector view in Test Manager and decide
whether you want to update the baseline or sections of the baseline.

Suppose that your model uses a new solver. When you run the test case, the results do not
match, causing the test to fail.

1 Open the test file that contains the baseline test case you want to run.
2 Select the test case and run it.
3 If the test fails, in the Results and Artifacts pane, expand the Baseline Criteria.

Select a signal that failed that you want to examine.

When you select the signal, the data inspector view opens. The top graph is the
baseline simulation signal overly. The bottom is the difference between those signals
and the tolerance. You can adjust tolerances in the pane in the lower-left corner of
the Test Manager. This example shows an absolute tolerance of .2.

7 Test Manager Test Cases

7-60

4 To examine each failure, in the toolstrip, click Next Failure or Previous Failure.
Each contiguous set of failed signal comparison points makes up one region. Data
cursors show the bounds of each region.

 Examine Test Failures and Modify Baselines

7-61

5 You can update the baseline data to use newer simulation results using the Update
Baseline menu.

• To update the entire signal, select Update Baseline Signal.

7 Test Manager Test Cases

7-62

• To update only the data in the failure region, select Update Selected Signal
Region.

• To replace all the signal data in the baseline with the new data, select Update All
Signals.

Manually Update Signal Data in a Baseline
If your model changes such that you expect a different simulation output, you can update
all or part of the baseline signal data. If the baseline is a MAT-file, you can edit the data in
the signal editor. Microsoft Excel files open in Excel.

To update signal data in a MAT-file baseline:

1 Open the test file that contains the baseline you want to edit.
2 Select the test case.
3 Under Baseline Criteria, select the baseline whose signal data you want to edit.

Click Edit.
4 The signal editor opens. In the Scenarios and Signals pane, expand the data node.
5 Select the check box next to the signal whose data you want to edit.

 Examine Test Failures and Modify Baselines

7-63

7 Test Manager Test Cases

7-64

Tip To see the time and data for points, display a data cursor and drag it along the
signal.

6 Edit the signal data in the table, and then click Apply.
7 To update the baseline with the new expected output data, click Save.

See Also

More About
• “Work with Basic Signal Data” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Model Output To Baseline Data” on page 7-9

 See Also

7-65

Create and Run Test Cases with Scripts
In this section...
“Create and Run a Baseline Test Case” on page 7-66
“Create and Run an Equivalence Test Case” on page 7-67
“Run a Test Case and Collect Coverage” on page 7-68
“Create and Run Test Case Iterations” on page 7-69

For a list of functions and objects in the Simulink Test programmatic interface, see “Test
Scripts”.

Create and Run a Baseline Test Case
This example shows how to use sltest.testmanager functions, classes, and methods
to automate tests and generate reports. You can create a test case, edit the test case
criteria, run the test case, and generate results reports programmatically. The example
compares the simulation output of the model to a baseline.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'baseline','Baseline API Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc,'Model','sldemo_absbrake');

% Capture the baseline criteria
baseline = captureBaselineCriteria(tc,'baseline_API.mat',true);

% Test a new model parameter by overriding it in the test case
% parameter set
ps = addParameterSet(tc,'Name','API Parameter Set');
po = addParameterOverride(ps,'m',55);

% Set the baseline criteria tolerance for one signal
sc = getSignalCriteria(baseline);

7 Test Manager Test Cases

7-66

sc(1).AbsTol = 9;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

% Generate a report from the results data
filePath = 'test_report.pdf';
sltest.testmanager.report(ResultsObj,filePath,...
 'Author','Test Engineer',...
 'IncludeSimulationSignalPlots',true,...
 'IncludeComparisonSignalPlots',true);

The test case fails because only one of the signal comparisons between the simulation
output and the baseline criteria is within tolerance. The results report is a PDF and opens
when it is completed. For more report generation settings, see the
sltest.testmanager.report function reference page.

Create and Run an Equivalence Test Case
This example compares signal data between two simulations to test for equivalence.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'equivalence','Equivalence Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
% for Simulation 1 and Simulation 2
setProperty(tc,'Model','sldemo_absbrake','SimulationIndex',1);
setProperty(tc,'Model','sldemo_absbrake','SimulationIndex',2);

% Add a parameter override to Simulation 1 and 2
ps1 = addParameterSet(tc,'Name','Parameter Set 1','SimulationIndex',1);
po1 = addParameterOverride(ps1,'Rr',1.20);

ps2 = addParameterSet(tc,'Name','Parameter Set 2','SimulationIndex',2);

 Create and Run Test Cases with Scripts

7-67

po2 = addParameterOverride(ps2,'Rr',1.24);

% Capture equivalence criteria
eq = captureEquivalenceCriteria(tc);

% Set the equivalence criteria tolerance for one signal
sc = getSignalCriteria(eq);
sc(1).AbsTol = 2.2;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

In the Equivalence Criteria Result section of the Test Manager results, the yout.Ww
signal passes because of the tolerance value. The other signal comparisons do not pass,
and the overall test case fails.

Run a Test Case and Collect Coverage
This example shows how to use a simulation test case to collect coverage results. To
collect coverage, you need a Simulink Coverage license.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');
ts = createTestSuite(tf,'API Test Suite');
tc = createTestCase(ts,'simulation','Coverage Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf,'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc,'Model','sldemo_autotrans');

% Turn on coverage settings at test-file level
cov = getCoverageSettings(tf);
cov.RecordCoverage = true;

% Enable MCDC and signal range coverage metrics
cov.MetricSettings = 'mr';

7 Test Manager Test Cases

7-68

% Run the test case and return an object with results data
ro = run(tf);

% Get the coverage results
tfr = getTestFileResults(ro);
tsr = getTestSuiteResults(tfr);
tcs = getTestCaseResults(tsr);
cr = getCoverageResults(tcs);

% Open the Test Manager to view results
sltest.testmanager.view;

In the Results and Artifacts pane of the Test Manager, you can view the coverage
results in the test case result.

Create and Run Test Case Iterations
This example shows how to create test iterations. You can create table iterations
programmatically that appear in the Iterations section of a test case. The example
creates a simulation test case and assigns a Signal Builder group for each iteration.

% Create test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('Iterations Test File');
ts = getTestSuites(tf);
tc = createTestCase(ts,'simulation','Simulation Iterations');

% Specify model as system under test
setProperty(tc,'Model','sldemo_autotrans');

% Set up table iteration
% Create iteration object
testItr1 = sltestiteration;
% Set iteration settings
setTestParam(testItr1,'SignalBuilderGroup','Passing Maneuver');
% Add the iteration to test case
addIteration(tc,testItr1);

% Set up another table iteration
% Create iteration object
testItr2 = sltestiteration;
% Set iteration settings
setTestParam(testItr2,'SignalBuilderGroup','Coasting');
% Add the iteration to test case
addIteration(tc,testItr2);

 Create and Run Test Cases with Scripts

7-69

% Run test case that contains iterations
results = run(tc);

% Get iteration results
tcResults = getTestCaseResults(results);
iterResults = getIterationResults(tcResults);

7 Test Manager Test Cases

7-70

Test Iterations

In this section...
“Create Table Iterations” on page 7-71
“Create Scripted Iterations” on page 7-75
“Capture Baseline Data from Iterations” on page 7-77
“Sweep Through a Set of Parameters” on page 7-80

You can run the same test case with different data or configuration sets by using test case
iterations. Iterations can use different:

• Parameters.
• External inputs.
• Configuration sets.
• Signal Editor scenarios.
• Signal Builder groups.
• Baseline data.

Set up iterations in the Iterations section of a test case. You can use table iterations or
scripted iterations. If the test collects coverage using Simulink Coverage, the same
coverage settings apply to all iterations in the test case.

Whether you use table or scripted iterations, you can see the iterations in the test case by
clicking the Show Iterations button.

Create Table Iterations
Table Iterations provide a quick way to add iterations based items in your model or test
case. To create iterations with the table, first make the appropriate columns visible:

1 Expand the Iterations > Table Iterations section.
2 In the table, add or remove columns by clicking the button and selecting items in

the list. For example, to display parameter and configuration sets, select the
Parameter Set and Configuration Set items.

 Test Iterations

7-71

Add Iterations Manually

1 To manually add iterations, click Add. The table displays a new iteration row.
2 Assign an iteration name and select items for the iteration. For example, this test

case has four iterations. Each iteration uses a different combination of external input
and baseline data.

Generate Table Iterations

You can also automatically generate iterations from data in your test case and model:

1 Click the Auto Generate button.
2 Select items to generate iterations.

If you select multiple items, iterations are created in sequential pairings. For
example:

• The model sldemo_autotrans has a Signal Builder block with four signal
groups, labeled S1, S2, S3, and S4.

7 Test Manager Test Cases

7-72

• The test case has three parameter sets, labeled P1, P2, and P3.
• Automatically generating iterations from Signal Builder groups and parameter

sets results in three iterations. The iterations are limited by the three parameter
sets. Each iteration contains one Signal Builder group and one parameter set. The
Signal Builder group and parameter set are matched in the order that they are
listed in the Signal Builder block and parameter set section.

3 Specify an optional naming rule for the iterations. In the Iteration naming rule box,
enter the rule using:

• The name of each setting you want to use in the name, with spaces removed
• An underscore or space to separate each setting

For example, if you want to include the name of the parameter set, configuration set,
and baseline file name, enter ParameterSet_ConfigurationSet_Baseline.

 Test Iterations

7-73

Section Option Purpose
Signal Builder Group Applies to the Inputs section of a

simulation, baseline, or equivalence test
case, for the specified Signal Builder
Group. Each Signal Builder group is used
to generate an iteration.

Signal Editor scenario Applies to the Inputs section of a
simulation, baseline, or equivalence test
case, for the specified Signal Editor
Scenario. Each Signal Editor scenario is
used to generate an iteration.

Parameter Set Applies to the Parameter Overrides
section of a simulation, baseline, or
equivalence test case. Each parameter
override set is used to generate an
iteration.

External Input Applies to the Inputs section of a
simulation, baseline, or equivalence test
case, for the specified External Inputs
sets. Each external input set is used to
generate an iteration.

Configuration Set Applies to the Configuration Setting
Overrides section of a simulation, baseline,
or equivalence test case. Each iteration
uses the configuration setting specified.

Baseline Applies only to baseline test case types,
specifically to the Baseline Criteria
section of a baseline test case. Each
baseline criteria set is used to generate an
iteration.

Simulation 1 or 2 Applies only to equivalence test case types.
At the top of the Auto Generate Reports
dialog box, there is a menu for Simulation
1 or Simulation 2. These sections
correspond to the two simulation sections
within the equivalence test case.

7 Test Manager Test Cases

7-74

Create Scripted Iterations
You can run a custom set of iterations using a script in the Scripted Iterations section.
For example, you can define parameter sets or customize iteration order by using a
custom iteration. Scripted iterations are generated at run time when a test executes.

Iteration Script Components

An iteration script must contain certain components. The most basic iteration script
contains three elements:

1 An iteration object, created using sltestiteration.
2 An iteration setting, set using setTestParam.
3 The iteration registration, added using addIteration.

For example, this script creates an iteration that runs one signal group from a Signal
Builder block.

%% Iterate Using a Signal Builder Group

 Test Iterations

7-75

% Set up a new iteration object
testItr = sltestiteration;

% Set iteration setting using Signal Builder group
setTestParam(testItr,'SignalBuilderGroup',sltest_signalBuilderGroups{1});

% Add the iteration to run in this test case
% The predefined sltest_testCase variable is used here
addIteration(sltest_testCase,testItr);

For more information about the test iteration class, see
sltest.testmanager.TestIteration. You can iterate over multiple items, such as
Signal Builder groups. You can iterate over all Signal Builder groups in the block by
putting the basic iteration script in a loop:
%% Iterate Over All Signal Builder Groups

% Determine the number of possible iterations
numSteps = length(sltest_signalBuilderGroups);

% Create each iteration
for k = 1 : numSteps
 % Set up a new iteration object
 testItr = sltestiteration;

 % Set iteration settings
 setTestParam(testItr,'SignalBuilderGroup',sltest_signalBuilderGroups{k});

 % Add the iteration to run in this test case
 % You can pass in an optional iteration name
 addIteration(sltest_testCase,testItr);
end

Predefined Variables

You can use predefined variables to write iterations scripts. To see the list of predefined
variables in the Test Manager, expand the Help on creating test iterations section. You
write the iterations script in the script box within the Scripted Iterations section. The
script box is a functional workspace, which means the MATLAB base workspace cannot
access information from the script box. If you define variables in the script box, then
other workspaces cannot use the variable.

The predefined variables are:

• sltest_bdroot — Model simulated by the test case, defined as a string
• sltest_sut — The System Under Test, defined as a string
• sltest_isharness — true if sltest_bdroot is a harness model, defined as a

logical

7 Test Manager Test Cases

7-76

• sltest_externalInputs — Name of external inputs, defined as a cell array of
strings

• sltest_parameterSets — Name of parameter override sets, defined as a cell array
of strings

• sltest_configSets — Name of configuration settings, defined as a cell array of
strings

• sltest_tableIterations — Iteration objects created in the iterations table,
defined as a cell array of sltest.testmanager.TestIteration objects

• sltest_testCase — Current test case object, defined as an
sltest.testmanager.TestCase object

Scripted Iteration Templates

You can quickly generate iterations for your test case using templates for Signal Builder
groups, parameter sets, external inputs, configuration sets, and baseline sets, if you are
using a baseline test case. Scripted iteration templates follow lockstep ordering and
pairing of test settings. For more information about lockstep ordering, see “Create Table
Iterations” on page 7-71.

For example, if you want to run all signal builder groups in a scripted iteration:

1 Click Iteration Templates.
2 Select the test case settings you want to iterate through. Click OK.

The script is generated and added to the script box below any existing scripts.
3 To generate a table that gives a preview of the iterations that execute when you run

the test case, click Show Iterations.

Capture Baseline Data from Iterations
This example shows how to create a baseline test by capturing data from a test case with
table iterations. You create the iterations from Signal Builder groups in the model. Before
running the example, navigate to a writable folder on the MATLAB® path.

1. Open the model. At the command line, enter

Model = 'sltestCar';
open_system(fullfile(matlabroot,'examples','simulinktest',Model));

 Test Iterations

7-77

2. Create a test file that contains iterations, and open the Test Manager. At the command
line, enter

tf = sltest.testmanager.TestFile('IterationBaselineTest');
sltest.testmanager.load(tf.Name);
sltest.testmanager.view;

3. In the Test Manager, right-click the test case and select Rename. Rename the test case
Baseline Test.

4. In the System Under Test section, for Model, enter sltestCar.

5. Select the signals for the baseline data:

1 In the Simulation Outputs section, click Add. The Signal Selection dialog box
appears.

2 In the model canvas, select the output torque and vehicle speed signals. The
signals appear in the Signal Selection dialog box.

3 In the dialog box, select both signals and click Add.
4 The signals appear in the Logged Signals table.

7 Test Manager Test Cases

7-78

6. Add iterations for the test case:

1 Expand the Iterations section of the test case.
2 Expand the Table Iterations section and click Auto Generate.
3 In the dialog box, select Signal Builder Group. Click OK.
4 The table lists the iterations corresponding to the four Signal Builder groups.

7. Capture baseline data for the iterations:

1 In the Baseline Criteria section, click the arrow next to Capture, and select
Capture for Iterations.

2 Specify a location for the baseline data files.
3 Click Create.

The model simulates for all Signal Builder groups. The baseline data for output_torque
and vehicle_speed are captured in four MAT files. Also, each baseline data set is added
to its corresponding iterations in the table.

 Test Iterations

7-79

Sweep Through a Set of Parameters
Scripted iterations can be used to test a model by sweeping through a set of parameters.
You can use this script to try different values for the model workspace parameter Iei in
the model sltestCar. Add the script under Iterations > Scripted Iterations.

%% Iterate over Iei parameter

% Set up the parameter values to sweep over
IeiValues = [0.021,0.022,0.022,0.023];
numSteps = length(IeiValues);

% Create each iteration
for k = 1 : numSteps
 % Set up a new iteration object
 testItr = sltestiteration;

7 Test Manager Test Cases

7-80

 % Set value of lei (parameter in model workspace)
 setVariable(testItr,'Name','Iei','Source','model workspace',...
 'Value',IeiValues(k));

 % Add the iteration to run in this test case
 addIteration(sltest_testCase,testItr);
end

After you add the script, click Show Iterations. You can see the iterations that the script
created.

Running the test generates a result for each iteration.

 Test Iterations

7-81

See Also
sltest.testmanager.TestIteration

Related Examples
• “Create and Run Test Cases with Scripts” on page 7-66

7 Test Manager Test Cases

7-82

Collect Coverage in Tests
In this section...
“Enable and Collect Coverage for a Test File” on page 7-83
“Considerations for Collecting Coverage in Test Harnesses” on page 7-86

If you use Simulink Coverage to generate model and code coverage, then you can collect
coverage metrics when you run your test cases. For test cases with coverage collection
turned on, Test Manager includes the coverage of each metric you specify to collect in the
results.

To test a model for coverage, turn on coverage collection on the test file and specify the
metrics you want to collect. Test suites and test cases inherit the settings from the test
file. After coverage is turned on at the file level, you can turn it off and on for each test
suite or test case.

Enable and Collect Coverage for a Test File
Enable coverage collection, view coverage results in Test Manager, and trace coverage
results from Test Manager to the model. The model sldemo_autotrans specifies
coverage.

For information about types of model coverage, see “Types of Model Coverage” (Simulink
Coverage).

1 Create a test file and set up the test case for your model.
2 In the test file settings, under Coverage Settings, select Record coverage for

system under test. You can also specify whether to collect coverage for referenced
models.

3 Select the coverage metrics that you want to collect.
4 Run the test file.
5 To view the coverage results, select the test case result in the Results and Artifacts

pane and expand the Coverage Results section.

 Collect Coverage in Tests

7-83

6 If your test file or test suite collected coverage metrics for more than one model, you
can view all the coverage metrics in one place. Select the result and expand the
Aggregated Coverage Results section.

7 To trace the coverage results to the model, click the model name in the coverage
results table.

In the model, select model elements to see the coverage data.

7 Test Manager Test Cases

7-84

8 To create a report of the coverage for a model, click the arrow under the Report
column in the coverage results.

 Collect Coverage in Tests

7-85

Tip To see aggregated results from different test files, in the Results and Artifacts
pane, select the test file results whose coverage results you want to see in the same
results file. From the context menu, select Merge Coverage Results. A results file that
contains the combined coverage results appears in the list.

Considerations for Collecting Coverage in Test Harnesses
Loading coverage results to a model, or aggregating coverage results across models,
requires a model consistent with the coverage results. Therefore, to perform aggregated
coverage collection, it is recommended that you use test harnesses configured to
automatically synchronize the component under test. Set SynchronizationMode to
Synchronize on harness open and close. For more information, see “Synchronize
Changes Between Test Harness and Model” on page 2-53.

Coverage results association depends on test harness – main model synchronization:

• If the test harness is configured to synchronize the component under test when you
open or close the harness, coverage results from the test harness are associated with
the main model. When you close the test harness, the coverage results remain active
in memory. You can aggregate coverage with additional results collected from the
main model or another synchronized test harness.

• If the test harness is configured to only synchronize the component under test when
you manually push or rebuild, the coverage results are associated with the test
harness.

• When you close the test harness, the coverage results are removed from memory.
• If the component under test design differs between test harness and main model,

you cannot aggregate coverage results.
• You can aggregate coverage results with the main model if the component under

test design does not differ, but you must manually load the coverage results into
the main model. See the function cvload.

See Also
sltest.testmanager.CoverageSettings

7 Test Manager Test Cases

7-86

Related Examples
• “Perform Functional Testing and Analyze Test Coverage” on page 10-11
• “Create and Run Test Cases with Scripts” on page 7-66
• “Specify Coverage Options” (Simulink Coverage)

 See Also

7-87

Run Tests Using Parallel Execution
In this section...
“When Do Tests Benefit from Using Parallel Execution?” on page 7-88
“Use Parallel Execution” on page 7-88

If you have a license to Parallel Computing Toolbox, then you can execute tests in parallel
using a parallel pool (parpool). Running tests in parallel can speed up execution and
decrease the amount of time it takes to get test results.

When Do Tests Benefit from Using Parallel Execution?
In general, parallel execution can help reduce test execution time if you have

• A complex Simulink model that takes a long time to simulate.
• Numerous long-running tests, such as iterations.

Use Parallel Execution
To run a test file using parallel execution:

1 The Test Manager uses the default Parallel Computing Toolbox cluster. For
information about where to specify or change the cluster, see “Discover Clusters and
Use Cluster Profiles” (Parallel Computing Toolbox). Test Manager runs in parallel
only on the local machine.

2 On the Test Manager toolstrip, click the Parallel button.

3 Run a test file. The test file executes using parallel pool.
4 To turn off parallel execution, click the Parallel button to toggle it off.

Starting a parallel pool can take time, which would slow down test execution. To reduce
time:

7 Test Manager Test Cases

7-88

• Make sure that the parallel pool is already running before you run a test. By default,
the parallel pool shuts down after being idle for a specified number of minutes. To
change the setting, see “Specify Your Parallel Preferences” (Parallel Computing
Toolbox).

• Load Simulink on all the parallel pool workers.

See Also
sltest.testmanager.run

Related Examples
• “Clusters and Clouds” (Parallel Computing Toolbox)

 See Also

7-89

Set Signal Tolerances
In this section...
“Modify Criteria Tolerances” on page 7-90
“Change Leading Tolerance in a Baseline Comparison Test” on page 7-90

You can specify tolerances in the Baseline Criteria or Equivalence Criteria sections of
baseline and equivalence test cases. You can specify relative, absolute, leading, and
lagging tolerances for a signal comparison.

To learn about how tolerances are calculated, see “How the Simulation Data Inspector
Compares Data” (Simulink).

Modify Criteria Tolerances
To modify a tolerance, select the signal name in the criteria table, double-click the
tolerance value, and enter a new value.

If you modify a tolerance after you run a test case, rerun the test case to apply the new
tolerance value to the pass/fail results.

Change Leading Tolerance in a Baseline Comparison Test
Specify a tolerance when the difference between results falls in a range you consider
acceptable. Suppose that your model under test uses a particular solver. Solvers are
sometimes updated from one release to the next, and new solvers also become available.
If you use an updated solver or change solvers, you can specify an acceptable tolerance
for differences between your baseline and later tests.

Generate the Baseline

Generate the baseline for the sf_car model, which uses the ode-5 solver.

7 Test Manager Test Cases

7-90

1 Open the model sf_car.
2 Open the Test Manager and create a test file named Solver Compare. In the test

case, set the system under test to sf_car.
3 Select the signal to log. Under Simulation Outputs, click Add. In the model, select

the shift_logic output signal. In the Signal Selection dialog box, select the check
box next to shift_logic and click Add.

4 Save the baseline. Under Baseline Criteria, click Capture. Set the file format to
MAT. Name the baseline solver_baseline and click Capture.

After you capture the baseline MAT-file, the model runs and the baseline criteria
appear in the table. Each default tolerance is 0.

Change Solvers and Run the Test Case

Suppose that you want to use a different solver with your model. You run a test to
compare results using the new solver with the baseline.

1 In the model, change the solver to ode1.
2 In the Test Manager, with the Solver Compare test file selected, click Run.

In the Results and Artifacts pane, notice that the test failed.
3 Expand the results of the failed test. Under Baseline Criteria Result, select the

shift_logic signal.

The Comparison tab shows where the difference occurred.

 Set Signal Tolerances

7-91

4 Zoom the comparison chart where the results diverged. The comparison signal
changes ahead of the baseline, that is, it leads the baseline signal.

7 Test Manager Test Cases

7-92

Preview and Set a Leading Tolerance Value

Suppose that your team determines that a tolerance the size of the simulation step size
(.04 in this case) is acceptable. In the Test Manager, set a leading tolerance value. Use a
leading tolerance for the signal whose change occurs ahead of your baseline. Use a
lagging tolerance for a signal whose change occurs after your baseline.

You can preview how the tolerance value affects the test to see if the test passes with the
specified tolerance. Then set the tolerance on the baseline criteria and rerun the test.

1 Preview whether the tolerance you want to use causes the test to pass. With the
result signal selected, in the property box, set Leading Tolerance to .04.

 Set Signal Tolerances

7-93

When you change this value, the status changes to show that the failed tests pass.
2 When you are satisfied with the tolerance value, enter it in the baseline criteria so

you can rerun the test and save the new pass-fail result. In the Test Browser pane,
select the test case in the Solver Compare test.

3 Under Baseline Criteria, change the Leading Tol value for the
solver_baseline.mat file to .04.

By default, each signal inherits this value from the baseline file. You can override the
value for each signal.

4 Run the test again. The test passes.
5 To store the tolerance value and the passed test with the test file, save the test file.

See Also
sltest.testmanager.BaselineCriteria |
sltest.testmanager.SignalCriteria

Related Examples
• “Compare Model Output To Baseline Data” on page 7-9

7 Test Manager Test Cases

7-94

Test Sections
In this section...
“Select Releases for Testing” on page 7-95
“Set Preferences to Display Test Sections” on page 7-96
“Select releases for simulation” on page 7-96
“Tags” on page 7-96
“Description” on page 7-96
“Requirements” on page 7-97
“System Under Test” on page 7-97
“Parameter Overrides” on page 7-98
“Callbacks” on page 7-99
“Inputs” on page 7-100
“Simulation Outputs” on page 7-101
“Configuration Setting Overrides” on page 7-101
“Simulation 1 and Simulation 2” on page 7-101
“Equivalence Criteria” on page 7-102
“Baseline Criteria” on page 7-102
“Logical and Temporal Assessments” on page 7-103
“Custom Criteria” on page 7-104
“Iterations” on page 7-104
“Coverage Settings” on page 7-105
“Test File Options” on page 7-105

To view or edit the test sections, select a test file, suite, or case in the Test Browser
pane.

Select Releases for Testing
You can select MATLAB releases installed on your system to create and run tests in. Use
this preference to specify the MATLAB installations that you want to make available for
testing with Test Manager. You can use releases from R2011b forward. The releases you

 Test Sections

7-95

add become available to select from the Select releases for simulation list when you
design the test.

You can add releases to the list and delete them. You cannot delete the release you
started MATLAB in.

To add a release, click Add, navigate to the location of the MATLAB installation you want
to add, and click OK.

For more information, see “Run Tests in Multiple Releases” on page 7-55.

Set Preferences to Display Test Sections
To simplify the Test Manager layout, you can select the sections of the test case, test
suite, or test file that appear in the Test Manager. Test case sections that were modified
appear in the Test Manager, regardless of the preference setting.

1 In the toolstrip, click Preferences.
2 Select the Test File, Test Suite, or Test Case tab.
3 Select sections to show, or clear sections to hide. To show only sections where

settings are set, clear all selections in the Preferences dialog box.
4 Click OK.

Also see sltest.testmanager.getpref and sltest.testmanager.setpref.

Select releases for simulation
Select the releases that you want available for running test cases. Build the list of
releases using the Release pane in the Test Manager Preferences dialog box. For more
information, see “Run Tests in Multiple Releases” on page 7-55.

Tags
Tag your tests with useful categorizations, such as safety, logged-data, or burn-in.
Filter tests using these tags when executing tests or viewing results. See “Filter Test
Execution and Results” on page 7-135.

Description
In this section, add descriptive text to your test case, test suite, or test file.

7 Test Manager Test Cases

7-96

Requirements
If you have a Simulink Requirements license, you can establish traceability by linking
your test cases to requirements. For more information, see “Link to Test Cases from
Requirements” (Simulink Requirements).

To link a test case, test suite, or test file to a requirement:

1 Open the Requirements Editor. In the Simulink menu, select Analysis >
Requirements > Requirements Editor.

2 Highlight a requirement.
3 In the Test Manager, in the Requirements section, click the arrow next to the Add

button and select Link to Selected Requirement.
4 The requirement link appears in the Requirements list.

System Under Test
Specify the model you want to test in the System Under Test section. To use an open

model in the currently active Simulink window, click the Use current model button .

Note The model must be available on the path to run the test case. You can add the
model's containing folder to the path using the preload callback. See “Callbacks” on page
7-99.

Specifying a new model in the System Under Test section can cause the model
information to be out of date. To update the model test harnesses, Signal Builder groups,

and available configuration sets, click the Refresh button .

Test Harness

If you have a test harness in your system under test, then you can select the test harness
to use for the test case. If you have added or removed test harnesses in the model, click

the Refresh button to view the updated test harness list.

For more information about using test harnesses, see “Refine, Test, and Debug a
Subsystem” on page 2-20.

 Test Sections

7-97

Simulation Settings

You can override the System Under Test simulation settings such as the simulation
mode, start time, stop time, and initial state.

Considerations

• The System Under Test cannot be in fast restart or external mode.
• To stop a test running in Rapid Accelerator mode, press Ctrl+C at the MATLAB

command prompt.
• When running parallel execution in rapid accelerator mode, streamed signals do not

show up in the Test Manager.
• The System Under Test cannot be a protected model.

Parameter Overrides
In this section, you can specify parameter values in the test case to override the
parameter values in the model workspace, data dictionary, or base workspace.
Parameters are grouped into sets. You can turn parameter sets and individual parameter
overrides on or off by using the check box next to the set or parameter.

To add a parameter override:

1 Click Add.

A dialog box opens with a list of parameters. If the list of parameters is not current,

click the Refresh button in the dialog box.
2 Select the parameter you want to override.
3 To add the parameter to the parameter set, click OK.
4 Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value column
and press Enter.

You can also add a set of parameter overrides from a MAT-file. Click the Add arrow and
select Add File to create a parameter set from a MAT-file.

For an example that uses parameter overrides, see “Override Model Parameters in a Test
Case”.

7 Test Manager Test Cases

7-98

Considerations

The Test Manager displays only top-level system parameters from the system under test.

Callbacks
Test-File Level Callbacks

Two callback scripts are available in each test suite that execute at different times during
a test:

• Setup runs before test file executes.
• Cleanup runs after test file executes.

Test-Suite Level Callbacks

Two callback scripts are available in each test suite that execute at different times during
a test:

• Setup runs before the test suite executes.
• Cleanup runs after the test suite executes.

Test-Case Level Callbacks

Three callback scripts are available in each test case that execute at different times
during a test:

• Pre-load runs before the model loads and before the model callbacks.
• Post-load runs after the model loads and the PostLoadFcn model callback.
• Cleanup runs after simulations and model callbacks.

To run a single callback script, click the Run button above the corresponding script.

You can use predefined variables in the test case callbacks:

• sltest_bdroot available in Post-Load: The model simulated by the test case. The
model can be a harness model.

• sltest_sut available in Post-Load: The system under test. For a harness, it is the
component under test.

 Test Sections

7-99

• sltest_isharness available in Post-Load: Returns true if sltest_bdroot is a
harness model.

• sltest_simout available in Cleanup: Simulation output produced by simulation.
• sltest_iterationName available in Pre-Load, Post-Load, and Cleanup: Name of

the currently executing test iteration.

The test case callback scripts are not stored with the model and do not override Simulink
model callbacks. Consider the following when using callbacks:

• To stop execution of an infinite loop from a callback script, press Ctrl+C at the
MATLAB command prompt.

• sltest.testmanager functions are not supported.

Inputs
A test case can use input data from:

• A Signal Builder or Signal Editor block in the system under test. Select Signal Editor
scenario or Signal Builder group, and select the scenario or signal group. The
system under test can have only one Signal Builder or Signal Editor block at the top
level.

• An external data file. In the External Inputs table, click Add. Select a MAT-file or
Microsoft Excel file.

For more information on using external files as inputs, see “Run Tests Using External
Data” on page 7-25. For information about the file format for Microsoft Excel files in
Test Manager, see “Format Test Case Data in Excel” on page 7-38.

• An input file template that you create and populate with data. See “Test Case Input
Data Files” on page 7-34.

To include the input data in your test results set, select Include input data in test
result.

If the time interval of your input data is shorter than the model simulation time, you can
limit the simulation to the time specified by your input data by selecting Stop simulation
at last time point.

For more information on test inputs, see the Test Authoring: Inputs page.

7 Test Manager Test Cases

7-100

Edit Input Data Files in Test Manager

From the Test Manager, you can edit your input data files.

To edit a file, select the file and click Edit. You can then edit the data in the signal editor
for MAT-files or Microsoft Excel for Excel files.

To learn about the syntax for Excel files, see “Format Test Case Data in Excel” on page 7-
38.

Simulation Outputs
Use the Simulation Outputs section to add signal outputs to your test results. Signals
logged in your model or test harness can appear in the results after you add them as
simulation outputs. You can then plot them. Add individual signals to log and plot or add a
signal set.

Under Simulation Outputs, click Add. Follow the user interface. For more information,
see “Capture Simulation Data in a Test Case” on page 7-49.

Configuration Setting Overrides
In the test case, you can specify configuration settings that differ from the settings in the
model. Setting the configuration settings in the test case enables you to try different
configurations without modifying your model.

Simulation 1 and Simulation 2
These sections appear in equivalence test cases. Use them to specify the details about the
simulations that you want to compare. Enter the system under test, the test harness if
applicable, and simulation setting overrides under Simulation 1. You can then click
Copy settings from Simulation 1 under Simulation 2 to use a starting point for your
second set of simulation settings.

For the test to pass, Simulation 1 and Simulation 2 must log the same signals.

Use these sections with the Equivalence Criteria section to define the premise of your
test case. For an example of an equivalence test, see “Test Two Simulations for
Equivalence”.

 Test Sections

7-101

Equivalence Criteria
This section appears in equivalence test cases. The equivalence criteria is a set of signal
data to compare in Simulation 1 and Simulation 2. Specify tolerances to regulate pass-fail
criteria of the test. You can specify absolute, relative, leading, and lagging tolerances for
the signals.

To specify tolerances, first click Capture to run the system under test in Simulation 1 and
add signals marked for logging to the table. Specify the tolerances in the table.

After you capture the signals, you can select signals from the table to narrow your results.
If you do not select signals under Equivalence Criteria, running the test case compares
all the logged signals in Simulation 1 and Simulation 2.

For an example of an equivalence test case, see “Test Two Simulations for Equivalence”.

Baseline Criteria
The Baseline Criteria section appears in baseline test cases. When a baseline test case
executes, Test Manager captures signal data from signals in the model marked for logging
and compares them to the baseline data.

Capture Baseline Criteria

To capture logged signal data from the system under test to use as the baseline criteria,
click Capture. Then follow the prompts in the Capture Baseline dialog box. Capturing the
data compiles and simulates the system under test and stores the output from the logged
signals to the baseline. For a baseline test example, see “Compare Model Output To
Baseline Data” on page 7-9.

You can save the signal data to a MAT-file or a Microsoft Excel file. To understand the
format of the Excel file, see “Format Test Case Data in Excel” on page 7-38.

You can capture the baseline criteria using the current release for simulation or another
release installed on your system. Add the releases you want to use in the Test Manager
preferences. Then, select the releases you want available in your test case using the
Select releases for simulation option in the test case. When you run the test, you can
compare the baseline against the release you created the baseline in or against another
release. For more information, see “Run Tests in Multiple Releases” on page 7-55.

7 Test Manager Test Cases

7-102

When you select Excel as the output format, you can specify the sheet name to save the
data to. If you use the same Excel file for input and output data, by default both sets of
data appear in the same sheet.

If you are capturing the data to a file that already contains outputs, specify the sheet
name to overwrite the output data only in that sheet of the file.

To save a baseline for each test case iteration in a separate sheet in the same file, select
Capture a baseline for each iterations. This check box appears only if your test case
already contains iterations. For more information iterations, see “Test Iterations” on page
7-71.

Specify Tolerances

You can specify tolerances to determine the pass-fail criteria of the test case. You can
specify absolute, relative, leading, and lagging tolerances for individual signals or the
entire baseline criteria set.

After you capture the baseline, the baseline file and its signals appear in the table. In the
table, you can set the tolerances for the signals. To see tolerances used in an example for
baseline testing, see “Compare Model Output To Baseline Data” on page 7-9.

Add File as Baseline

By clicking Add, you can select an existing file as a baseline. You can add MAT-files and
Microsoft Excel files as the baseline. Format Microsoft Excel files as described in “Format
Test Case Data in Excel” on page 7-38.

Update Signal Data in Baseline

You can edit the signal data in your baseline, for example, if your model changed and you
expect different values. To open the signal editor or the Microsoft Excel file for editing,
select the baseline file from the list and click Edit. See “Manually Update Signal Data in a
Baseline” on page 7-63.

You can also update your baseline when you examine test failures in the data inspector
view. See “Examine Test Failures and Modify Baselines” on page 7-60.

Logical and Temporal Assessments
Create temporal assessments using the form-based editor that prompts you for
conditions, events, signal values, delays, and responses. When you collapse the individual

 Test Sections

7-103

elements, the editor displays a readable statement summarizing the assessment. See
“Assess Temporal Logic Using Temporal Assessments” on page 3-82.

Custom Criteria
This section includes an embedded MATLAB editor to define custom pass/fail criteria for
your test. Select function customCriteria(test) to enable the criteria script in the
editor. Custom criteria operate outside of model run time; the script evaluates after model
simulation.

Common uses of custom criteria include verifying signal characteristics or verifying test
conditions. MATLAB Unit Test qualifications provide a framework for verification criteria.
For example, this custom criteria script gets the last value of the signal PhiRef and
verifies that it equals 0:
% Get the last value of PhiRef from the dataset Signals_Req1_3
lastValue = test.sltest_simout.get('Signals_Req1_3').get('PhiRef').Values.Data(end);

% Verify that the last value equals 0
test.verifyEqual(lastValue,0);

See “Process Test Results with Custom Scripts” on page 7-111. For a list of MATLAB Unit
Test qualifications, see “Types of Qualifications” (MATLAB).

You can also define plots in the Custom Criteria section. See “Create, Store, and Open
MATLAB Figures” on page 7-122.

Iterations
Use iterations to repeat a test with different parameter values, configuration sets, or
input data.

• You can run multiple simulations with the same inputs, outputs, and criteria by
sweeping through different parameter values in a test case.

• Models and external data files can contain multiple test input scenarios, such as signal
groups. To simplify your test file architecture, you can run different input scenarios as
iterations rather than as different test cases. You can apply different baseline data to
each iteration, or capture new baseline data from an iteration set.

• You can iterate over different configuration sets, for example to compare results
between solvers or data types.

To create iterations from defined parameter sets, signal groups, external data files, or
configuration sets, use table iterations. To create a custom set of iterations from the

7 Test Manager Test Cases

7-104

available test case elements, write a MATLAB iteration script in the test case. For more
information about test iterations, see “Test Iterations” on page 7-71

Coverage Settings
Use this test section to configure coverage collection for test files, test suites, and test
cases. For more information about collecting coverage in your test, see “Collect Coverage
in Tests” on page 7-83.

Test File Options
Close open Figures at the end of execution

When your tests generate figures, select this option to clear the working environment of
figures after the test execution completes.

Store MATLAB figures

Select this option to store figures generated during the test with the test file. You can
enter MATLAB code that creates figures and plots as a callback or in the test case
Custom Criteria section. See “Create, Store, and Open MATLAB Figures” on page 7-122.

Generate report after execution

Select Generate report after execution to create a report after the test executes.
Selecting this option displays report options that you can set. The settings are saved with
the test file.

For detailed reporting information, see “Export Test Results and Generate Reports” on
page 8-9 and “Customize Test Reports” on page 8-15.

See Also
sltest.testmanager.getpref | sltest.testmanager.setpref

 See Also

7-105

Increase Coverage by Generating Test Inputs
In this section...
“Overall Workflow” on page 7-106
“Test Case Generation Example” on page 7-107

Using Simulink Design Verifier, you can generate test inputs that replicate design errors,
achieve test objectives, or meet coverage criteria. Simulink Test can create test cases that
use test inputs and expected outputs from Simulink Design Verifier.

Overall Workflow
Test case generation follows this workflow.

1 Choose an existing Simulink Design Verifier results file, or generate new results by
analyzing your model.

• If you use an existing results file, you can load results by either:

• Using the Simulink Test command sltest.import.sldvData.
• Using Simulink Design Verifier menu items. In the model, select Analysis >

Design Verifier > Results > Load. Select the MAT file with the analysis
results.

• If you run a model analysis, the Simulink Design Verifier Results Summary
window appears after the analysis completes.

2 In the results summary window, click Export test cases to Simulink Test.
3 Enter the name of an existing or new test harness.
4 Select a test harness source for the generated test inputs. You can select

• Inport: The inputs are contained in the Simulink Design Verifier data file and
mapped to Inport blocks in the test harness. The mapping is shown in the Inputs
section of the test case. Using the Inport option allows you to map other inputs
to the test harness Inport blocks, which can be useful for running multiple test
cases or iterations using the same test harness.

• Signal Builder: The inputs are contained in groups in a Signal Builder block
inside the test harness. Using the Signal Builder option allows you to view the
test inputs in the Signal Builder block editor.

7 Test Manager Test Cases

7-106

5 Select a new or existing test file, and enter names for the test file and test case.
6 Click OK to export the test cases to Simulink Test. The test files and test cases are

updated in the Test Manager.

Test Case Generation Example
This example shows how to generate test cases for a controller subsystem using Simulink
Design Verifier, and export the test cases to a test file in Simulink Test. The example
requires a Simulink Design Verifier license.

The model is a closed-loop heat pump system. The controller accepts the measured room
temperature and set temperature inputs. The controller outputs a bus of three signals
controlling the fan, heat pump, and the direction of the heat pump (heat or cool). The
model contains a harness that tests heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot,'toolbox','sltest','examples',...
'sltestTestCaseFromDVExample.slx'));

2 Set the current working folder to a writable folder.
3 In the model, generate tests for the Controller subsystem. Right-click the

Controller block and select Design Verifier > Generate Tests for Subsystem.

Simulink Design Verifier generates tests for the component.
4 In the results summary window, click Export test cases to Simulink Test.
5 In the Export Design Verifier Test Cases dialog box, enter:

• Test Harness: TestHarness1
• Harness Source: Signal Builder
• Select Use a new test file
• Test File: ./TestFile_GeneratedTests.mldatx
• Test Case: <Create a new test case>

6 Click OK.

A new test file is created in the working folder, and a test harness is added to the
main model, owned by the Controller subsystem. Click the harness badge to
preview the new test harness.

 Increase Coverage by Generating Test Inputs

7-107

7 Click the TestHarness1 thumbnail to open the harness, and double-click the Signal
Builder block source to see the generated inputs.

7 Test Manager Test Cases

7-108

8 In the Test Manager, the new test case displays the system under test, and the test
harness containing the generated inputs in the Signal Builder source. Expand the
Iterations section to see the iterations corresponding to the signal builder groups.

 Increase Coverage by Generating Test Inputs

7-109

See Also
sltest.import.sldvData

7 Test Manager Test Cases

7-110

Process Test Results with Custom Scripts
In this section...
“MATLAB Testing Framework” on page 7-111
“Define a Custom Criteria Script” on page 7-112
“Reuse Custom Criteria and Debug Using Breakpoints” on page 7-113
“Assess the Damping Ratio of a Flutter Suppression System” on page 7-115
“Custom Criteria Programmatic Interface Example” on page 7-120

Testing your model often requires assessing conditions that ensure a test is valid, in
addition to verifying model behavior. MATLAB Unit Test provides a framework for such
assessments. In Simulink Test, you can use the test case custom criteria to author specific
assessments, and include MATLAB Unit Test qualifications in your script.

Custom criteria apply as post-simulation criteria to the simulation output. If you require
run-time verifications, use a verify() statement in a Test Assessment or Test Sequence
block. See “Assess Model Simulation Using verify Statements” on page 3-15.

MATLAB Testing Framework
A custom criteria script is a method of test, which is a matlab.unittest test case
object. To enable the function, in the test case Custom Criteria section of the Test
Manager, select function customCriteria(test). Inside the function, enter the custom
criteria script in the embedded MATLAB editor.

The embedded MATLAB editor lists properties of test. Create test assessments using
MATLAB Unit Test qualifications. Custom criteria supports verification and assertion type
qualifications. See “Types of Qualifications” (MATLAB). Verifications and assertions
operate differently when custom criteria are evaluated:

• Verifications – Other assessments are evaluated when verifications fail. Diagnostics
appear in the results. Use verifications for general assessments, such as checking
simulation against expected outputs.

Example: test.verifyEqual(lastValue,0)
• Assertions – The custom criteria script stops evaluating when an assertion fails.

Diagnostics appear in the results. Use assertions for conditions that render the criteria
invalid.

 Process Test Results with Custom Scripts

7-111

Example: test.assertEqual(lastValue,0).

Define a Custom Criteria Script
This example shows how to create a custom criteria script for an autopilot test case.

1 Open the test file.

sltest.testmanager.load('AutopilotTestFile.mldatx')
sltest.testmanager.view

2 In the Test Browser, select AutopilotTestFile > Basic Design Test Cases >
Requirement 1.3 Test. In the test case, expand the Custom Criteria section.

3 Enable the custom criteria script by selecting function customCriteria(test).
4 In the embedded MATLAB editor, enter the following script. The script gets the final

value of the signals Phi and APEng, and verifies that the final values equal 0.

% Get the last values
lastPhi = test.sltest_simout.get('Signals_Req1_3').get('Phi').Values.Data(end);
lastAPEng = test.sltest_simout.get('Signals_Req1_3').get('APEng').Values.Data(end);

% Verify the last values equal 0
test.verifyEqual(lastPhi,0,['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng,false,['Final APEng value: ',num2str(lastAPEng),'.']);

5 Run the test case.
6 In the Results and Artifacts pane, expand the Custom Criteria Result. Both

criteria pass.

7 Test Manager Test Cases

7-112

Reuse Custom Criteria and Debug Using Breakpoints
In addition to authoring criteria scripts in the embedded MATLAB editor, you can author
custom criteria in a standalone function, and call the function from the test case. Using a
standalone function allows you

• To reuse the custom criteria in multiple test cases.
• To set breakpoints in the criteria script for debugging.
• To investigate the simulation output using the command line.

In this example, you add a breakpoint to a custom criteria script. You run the test case,
list the properties of the test object at the command line, and call the custom criteria
from the test case.

Call Custom Criteria Script from the Test Case

1 Navigate to the folder containing the criteria function.

cd(fullfile(docroot,'toolbox','sltest','examples'))
2 Open the custom criteria script

open('sltestCheckFinalRollRefValues.m')

% This is a custom criteria function for a Simulink Test test case.
% The function gets the last values of Phi and APEng from the
% Requirements 1.3 test case in the test file AutopilotTestFile.

function sltestCheckFinalRollRefValues(test)

% Get the last values
lastPhi = test.sltest_simout.get('Signals_Req1_3').get('Phi').Values.Data(end)
lastAPEng = test.sltest_simout.get('Signals_Req1_3').get('APEng').Values.Data(end)

% Verify the last values equal 0
test.verifyEqual(lastPhi,0,['Final Phi value: ',num2str(lastPhi),'.']);
test.verifyEqual(lastAPEng,false,['Final APEng value: ',num2str(lastAPEng),'.']);

3 Open the test file

sltest.testmanager.load('AutopilotTestFile.mldatx')
sltest.testmanager.view

4 In the embedded MATLAB editor under Custom Criteria, enter the function call to
the custom criteria:

 Process Test Results with Custom Scripts

7-113

sltestCheckFinalRollRefValues(test)

Set Breakpoints and List test Properties

1 On line 8 of sltestCheckFinalRollRefValues.m, set a breakpoint by clicking the
dash to the right of the line number.

2 In the Test Manager, run the test case.

The command window displays a debugging prompt.
3 Enter test at the command prompt to display the properties of the

STMCustomCriteria object. The properties contain characteristics and simulation
data output of the test case.

test =

 STMCustomCriteria with properties:

 TestResult: [1×1 sltest.testmanager.TestCaseResult]
 sltest_simout: [1×1 Simulink.SimulationOutput]
 sltest_testCase: [1×1 sltest.testmanager.TestCase]
 sltest_bdroot: {'RollReference_Requirement1_3'}
 sltest_sut: {'RollAutopilotMdlRef/Roll Reference'}
 sltest_isharness: 1
 sltest_iterationName: ''

The property sltest_simout contains the simulation data. To view the data
PhiRef, enter

test.sltest_simout.get('Signals_Req1_3').get('PhiRef')

ans =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 struct with fields:

 Name: 'PhiRef'
 PropagatedName: ''
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 timeseries]

7 Test Manager Test Cases

7-114

4 In the MATLAB editor, click Continue to continue running the custom criteria script.
5 In the Results and Artifacts pane, expand the Custom Criteria Result. Both

criteria pass.
6 To reuse the script in another test case, call the function from the test case custom

criteria.

Assess the Damping Ratio of a Flutter Suppression System
Using a custom criteria script, verify that wing oscillations are damped in multiple
altitude and airspeed conditions.

The Simulation and Model

The model uses Simscape™ to simulate a Benchmark Active Controls Technology (BACT) /
Pitch and Plunge Apparatus (PAPA) setup. It uses Aerospace Blockset™ to simulate
aerodynamic forces on the wing.

The test iterates over 16 combinations of Mach and Altitude. The test case uses custom
criteria with Curve Fitting Toolbox™ to find the peaks of the wing pitch, and determine
the damping ratio. If the damping ratio is not greater than zero, the assessment fails.

Running this test case requires

• Simulink® Test™
• Simscape Multibody™
• Aerospace Blockset™
• Curve Fitting Toolbox™

Open the model and the test file.

open_system(fullfile(matlabroot,'examples','simulinktest',...
 'sltestFlutterSuppressionSystemExample.slx'))

 Process Test Results with Custom Scripts

7-115

open(fullfile(matlabroot,'examples','simulinktest',...
 'sltestFlutterCriteriaTest.mldatx'))

Custom Criteria Script

The test case custom criteria uses this script to verify that the damping ratio is greater
than zero.

% Get time and data for pitch
Time = test.sltest_simout.get('sigsOut').get('pitch').Values.Time(1:15000);
Data = test.sltest_simout.get('sigsOut').get('pitch').Values.Data(1:15000);

% Find peaks
[~, peakIds] = findpeaks(Data,'minpeakheight', 0.002, 'minpeakdistance', 50);
peakTime= Time(peakIds);
peakPos = Data(peakIds);
rn = peakPos(1)./peakPos(2:end);
L = 1:length(rn);

7 Test Manager Test Cases

7-116

% Do curve fitting
fittedModel = exponentialFitAndPlot(L, rn);
delta = fittedModel.d;

% Find damping ratio
dRatio = delta/sqrt((2*pi)^2+delta^2);

% Make sure damping ratio is greater than 0
test.verifyGreaterThan(dRatio,0,'Damping ratio must be greater than 0');

Test Results

Running the test case returns two conditions in which the damping ratio is greater than
zero.

results = sltest.testmanager.run

results =

 ResultSet with properties:

 Name: 'Results: 2019-Mar-03 16:55:16'
 NumPassed: 14
 NumFailed: 2
 NumDisabled: 0
 NumIncomplete: 0
 NumTotal: 16
 NumTestCaseResults: 0
 NumTestSuiteResults: 0
 NumTestFileResults: 1
 Outcome: Failed
 StartTime: 03-Mar-2019 16:55:19
 StopTime: 03-Mar-2019 16:58:59
 Duration: 220 sec
 CoverageResults: []
 Release: ''

 Process Test Results with Custom Scripts

7-117

The wing pitch plots from iteration 12 and 13 show the difference between a positive
damping ratio (iteration 12) and a negative damping ratio (iteration 13).

7 Test Manager Test Cases

7-118

sltest.testmanager.close

 Process Test Results with Custom Scripts

7-119

close_system('sltestFlutterSuppressionSystemExample.slx',0)

Custom Criteria Programmatic Interface Example
This example shows how to set and get custom criteria using the programmatic interface.

Before running this example, temporarily disable warnings that result from verification
failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

Load a Test File and Get Test Case Object

tf = sltest.testmanager.load('AutopilotTestFile.mldatx');

ts = getTestSuiteByName(tf,'Basic Design Test Cases');

tc = getTestCaseByName(ts,'Requirement 1.3 Test');

Create the Custom Criteria Object and Set Criteria

Create the custom criteria object.

tcCriteria = getCustomCriteria(tc)

tcCriteria =
 CustomCriteria with properties:

 Enabled: 0
 Callback: '% Return value: customCriteria...'

Create the custom criteria expression. This script gets the last value of the signal Phi and
verifies that it equals 0.

criteria = ...
 sprintf(['lastPhi = test.SimOut.get(''Signals_Req1_3'')',...
 '.get(''Phi'').Values.Data(end);\n',...
 'test.verifyEqual(lastPhi,0,[''Final: '',num2str(lastPhi),''.'']);'])

criteria =
 'lastPhi = test.SimOut.get('Signals_Req1_3').get('Phi').Values.Data(end);
 test.verifyEqual(lastPhi,0,['Final: ',num2str(lastPhi),'.']);'

7 Test Manager Test Cases

7-120

Set and enable the criteria.

tcCriteria.Callback = criteria;
tcCriteria.Enabled = true;

Run the Test Case and Get the Results

Run the test case.

tcResultSet = run(tc);

Get the test case results.

tcResult = getTestCaseResults(tcResultSet);

Get the custom criteria result.

ccResult = getCustomCriteriaResult(tcResult)

ccResult =
 CustomCriteriaResult with properties:

 Outcome: Failed
 DiagnosticRecord: [1x1 sltest.testmanager.DiagnosticRecord]

Restore warnings from verification failures.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

See Also

Related Examples
• “Test Models Using MATLAB Unit Test” on page 7-125
• “Create, Store, and Open MATLAB Figures” on page 7-122

 See Also

7-121

Create, Store, and Open MATLAB Figures
In this section...
“Create a Custom Figure for a Test Case” on page 7-122
“Include Figures in a Report” on page 7-124

You can create figures using MATLAB commands to include with test results and reports.
Enter the commands in a test case section that accepts MATLAB code. These sections
include the test case Custom Criteria section, and callbacks that can execute with your
test case.

If you include code that creates figures with your test case, you can:

• Display the figures after the test runs
• Store the figures with your test case
• Include them in a report
• Access stored figures from your test results

To specify this behavior, use the Test File Options section under the Test File settings.

• Select Close all open figures at the end of execution if you do not need to see the
figures right after the test executes, for example, if you are storing the figures or
including them in a report. Clear this check box if you are not storing the figures and
you want to view them after the test executes.

• Select Store MATLAB figures if you want to save the figures with the test results.
This option also enables you to open the figures from the results and to include them
in a report.

After you run the test, the figures appear under MATLAB Figures in the test case
results.

Create a Custom Figure for a Test Case
In this example, add code that creates a figure to the Custom Criteria section of a test
case. To access the figure from the test results, set options on the test file.

1 Open the model sldemo_absbrake.
2 In the Test Manager, create a test file and name it custom_figures.

7 Test Manager Test Cases

7-122

3 In the default test case, under System Under Test, set the model to
sldemo_absbrake.

4 Under Custom Criteria, select the function customCriteria(test) check box and
paste this code in the text box.

h = findobj(0,'Name','ABS Speeds and Slip');
if isempty(h)
 h=figure('Position',[26 100 452 700],...
 'Name','ABS Speeds and Slip',...
 'NumberTitle','off');
end
figure(h)
set(h,'DefaultAxesFontSize',8)

% Log data in sldemo_absbrake_output
out = test.sltest_simout.get('sldemo_absbrake_output');

% Plot wheel speed and car speed
subplot(3,1,1);
plot(out.get('yout').Values.Vs.Time, ...
 out.get('yout').Values.Vs.Data);
grid on;
title('Vehicle speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,2);
plot(out.get('yout').Values.Ww.Time, ...
 out.get('yout').Values.Ww.Data);
grid on;
title('Wheel speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,3);
plot(out.get('slp').Values.Time, ...
 out.get('slp').Values.Data);
grid on;
title('Slip'); xlabel('Time(sec)'); ylabel('Normalized Relative Slip');

5 Set the figure options for the test file custom_figures. Under Test File Options:

• Select Close all open figures at the end of execution. This option closes
figures created by your Test Manager MATLAB code.

• Select Store MATLAB figures.
6 With the test case or the test file selected, click Run.
7 In the Results and Artifacts pane, select the test case under the results for this test

run. Click the links under MATLAB Figures to see the plots generated when the test
ran. The plot generated by the code you entered appears under Custom Criteria.

 Create, Store, and Open MATLAB Figures

7-123

Include Figures in a Report
You can select the MATLAB Figures option in the Create Test Results Report dialog box
to include custom figures in your report. Alternatively, you can set report options under
Test File Options. The Test File Options settings are saved with the test file.

1 Select the test file custom_figures.
2 Under Test File Options, select Generate report after execution. The section

expands, displaying the same report options you can set using the dialog box.
3 To see the figures regardless of how the tests performed, set Results for to All

Tests.
4 Select the MATLAB figures check box.
5 With the test file selected, run the test. Running the test generates the report and

opens it in the PDF viewer.
6 Examine the report. The plot generated by the code you entered under Custom

Criteria appears in the report section Custom Criteria Plots.

See Also
sltest.testmanager.Options | sltest.testmanager.TestCase.getOptions |
sltest.testmanager.TestFile.getOptions |
sltest.testmanager.TestSuite.getOptions

Related Examples
• “Export Test Results and Generate Reports” on page 8-9

7 Test Manager Test Cases

7-124

Test Models Using MATLAB Unit Test
In this section...
“Overall Workflow” on page 7-125
“Considerations” on page 7-125
“Comparison of Test Nomenclature” on page 7-126
“Basic Workflow Using MATLAB® Unit Test” on page 7-127

You can use the MATLAB Unit Test framework to run tests authored in Simulink Test.
Using the MATLAB Unit Test framework:

• Allows you to execute model tests together with MATLAB Unit Test scripts, functions,
and classes.

• Enables model and code testing using the same framework.
• Enables integration with continuous integration (CI) systems, such as Jenkins™.

Overall Workflow
To run tests with MATLAB Unit Test:

1 Create a TestSuite from the Simulink Test file.
2 Create a TestRunner.
3 Create plugin objects to customize the TestRunner. For example:

• The matlab.unittest.plugins.TAPPlugin produces a results stream
according to the Test Anything Protocol for use with certain CI systems.

• The sltest.plugins.ModelCoveragePlugin specifies model coverage
collection and makes coverage results accessible from the command line.

4 Add the plugins to the TestRunner.
5 Run the test using the run method, or run tests in parallel using the runInParallel

method.

Considerations
When running tests using MATLAB Unit Test, consider the following:

• If you disable a test in the Test Manager, the test is filtered using MATLAB Unit Test,
and the result reflects a failed assumption.

 Test Models Using MATLAB Unit Test

7-125

Comparison of Test Nomenclature
MATLAB Unit Test has analogous properties to the functionality in Simulink Test. For
example,

• If the test case contains iterations, the MATLAB Unit Test contains parameterizations.
• If the test file or test suite contains callbacks, the MATLAB Unit Test contains one or

more callbacks fixtures.

Test Case Iterations and MATLAB Unit Test parameterizations

parameterization details correspond to properties of the iteration.

Simulink Test MATLAB Unit Test
Iteration type: Scripted parameterization property:

ScriptedIteration
Iteration type: Table parameterization property:

TableIteration
Iteration name parameterization Name
Test case iteration object parameterization Value

Test Callbacks and MATLAB Unit Test Fixtures

Fixtures depend on callbacks contained in the test file. Fixtures do not include test case
callbacks, which are executed with the test case itself.

Callbacks in Simulink Test Fixtures in MATLAB Unit Test
Test file callbacks FileCallbacksFixture
Test suite callbacks SuiteCallbacksFixture
File and suite callbacks Heterogeneous CallbacksFixture,

containing FileCallbacksFixture and
SuiteCallbacksFixture

No callbacks No fixture

7 Test Manager Test Cases

7-126

Basic Workflow Using MATLAB® Unit Test
This example shows how to create and run a basic MATLAB® Unit Test for a test file
created in Simulink® Test™. You create a test suite, run the test, and display the
diagnostic report.

Before running this example, temporarily disable warnings that result from verification
failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

1. Author a test file in the Test Manager, or start with a preexisting test file. For this
example, AutopilotTestFile tests a component of an autopilot system against several
requirements, using verify statements.

2. Create a TestSuite from the test file.

apsuite = testsuite('AutopilotTestFile.mldatx');

3. Run the test, creating a TestResult object. The command window returns warnings
from the verify statement failures.

apresults = run(apsuite);

Setting up FileCallbacksFixture
Done setting up FileCallbacksFixture: Invoked setup callback of "AutopilotTestFile".

Running AutopilotTestFile > Basic Design Test Cases

==
Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test.

 Framework Diagnostic:

 Failed criteria: Verification
 --> Simulink Test Manager Results:
 Results: 2019-Mar-03 16:51:29/AutopilotTestFile/Basic Design Test Cases/Requirement 1.3 Test
==
.
Done AutopilotTestFile > Basic Design Test Cases

 Test Models Using MATLAB Unit Test

7-127

Tearing down FileCallbacksFixture
Done tearing down FileCallbacksFixture: Invoked cleanup callback of "AutopilotTestFile".

Failure Summary:

 Name Failed Incomplete Reason(s)
 ===
 AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test X Failed by verification.

4. To view the details of the test, display the Report property of the DiagnosticRecord
object. The record shows that a verification failed during the test.

apresults.Details.DiagnosticRecord.Report

ans =
 'Verification failed in AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test.

 Framework Diagnostic:

 Failed criteria: Verification
 --> Simulink Test Manager Results:
 Results: 2019-Mar-03 16:51:29/AutopilotTestFile/Basic Design Test Cases/Requirement 1.3 Test'

Enable warnings.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

See Also
Test | TestResult | TestRunner | TestSuite | matlab.unittest.plugins
Package

Related Examples
• “Output Results for Continuous Integration Systems” on page 7-129
• “Run Tests for Various Workflows” (MATLAB)

7 Test Manager Test Cases

7-128

Output Results for Continuous Integration Systems
In this section...
“Test a Model for Continuous Integration Systems” on page 7-129
“Model Coverage Results for Continuous Integration” on page 7-132

You can create model tests that are compatible with continuous integration (CI) systems
such as Jenkins. To create CI-compatible results, run your Simulink Test files using
MATLAB Unit Test.

To run CI-compatible tests, follow this general procedure:

1 Create a test suite from the MLDATX test file.
2 Create a test runner.
3 Create plugins for the test output or coverage results.

• For test outputs, use the TAPPlugin or XMLPlugin.
• For model coverage, use the ModelCoveragePlugin and CoberturaFormat.

When collecting model coverage in Cobertura format:

• Only top model coverage is reflected in the Cobertura XML.
• Only model Decision coverage is reflected, and it is mapped to Condition

elements in Cobertura XML.
4 Create plugins for CI-compatible output.
5 Add the plugins to the test output or coverage results.
6 Add the test output plugins or coverage result plugins to the test runner.
7 Run the test.

Test a Model for Continuous Integration Systems
This example shows how to test a model, publish Test Manager results, and output results
in TAP format with a single execution.

You use MATLAB® Unit Test to create a test suite and a test runner, and customize the
runner with these plugins:

• matlab.unittest.plugins.TestReportPlugin produces a MATLAB Test Report.
• sltest.plugins.TestManagerResultsPlugin adds Test Manager results to the

MATLAB Test Report.

 Output Results for Continuous Integration Systems

7-129

• matlab.unittest.plugins.TAPPlugin outputs results to a TAP file.

The test case creates a square wave input to a controller subsystem and sweeps through
25 iterations of parameters a and b. The test compares the alpha output to a baseline
with a tolerance of 0.0046. The test fails on those iterations in which the output exceeds
this tolerance.

Before running this example, ensure that the working folder is writable.

1. Open the Simulink® Test™ test file.

testfile = fullfile('f14ParameterSweepTest.mldatx');
sltest.testmanager.view;
sltest.testmanager.load(testfile);

2. In the Test Manager, configure the test file for reporting.

Under Test File Options, select Generate report after execution. The section
expands, displaying several report options. For more information, see “Save Reporting
Options with a Test File” on page 8-10.

3. Create a test suite from the Simulink® Test™ test file.

import matlab.unittest.TestSuite

suite = testsuite('f14ParameterSweepTest.mldatx');

4. Create a test runner.

import matlab.unittest.TestRunner

f14runner = TestRunner.withNoPlugins;

5. Add the TestReportPlugin to the test runner.

The plugin produces a MATLAB Test Report F14Report.pdf.

import matlab.unittest.plugins.TestReportPlugin

pdfFile = 'F14Report.pdf';
trp = TestReportPlugin.producingPDF(pdfFile);
addPlugin(f14runner,trp)

6. Add the TestManagerResultsPlugin to the test runner.

7 Test Manager Test Cases

7-130

The plugin adds Test Manager results to the MATLAB Test Report.

import sltest.plugins.TestManagerResultsPlugin

tmr = TestManagerResultsPlugin;
addPlugin(f14runner,tmr)

7. Add the TAPPlugin to the test runner.

The plugin outputs to the F14Output.tap file.

import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

tapFile = 'F14Output.tap';
tap = TAPPlugin.producingVersion13(ToFile(tapFile));
addPlugin(f14runner,tap)

8. Run the test.

Several iterations fail, in which the signal-baseline difference exceeds the tolerance
criteria.

result = run(f14runner,suite);

Generating test report. Please wait.
 Preparing content for the test report.

 Adding content to the test report.
 Writing test report to file.
Test report has been saved to:
 C:\TEMP\Bdoc19a_1067994_10284\ibE7461B\27\tpc8279f68\simulinktest-ex40056435\F14Report.pdf

A single execution of the test runner produces two reports:

• A MATLAB Test Report that contains Test Manager results.
• A TAP format file that you can use with CI systems.

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

 Output Results for Continuous Integration Systems

7-131

Model Coverage Results for Continuous Integration
This example shows how to generate model coverage results for use with continuous
integration. Coverage is reported in the Cobertura format. You run a Simulink® Test™
test file using MATLAB® Unit Test.

1. Import classes and create a test suite from the test file AutopilotTestFile.mldatx.

import matlab.unittest.TestRunner

aptest = sltest.testmanager.TestFile(fullfile(matlabroot,'toolbox','simulinktest',...
 'simulinktestdemos','AutopilotTestFile.mldatx'));
apsuite = testsuite(aptest.FilePath);

2. Create a test runner.

trun = TestRunner.withNoPlugins;

3. Set the coverage metrics to collect. This example uses decision coverage. In the
Cobertura output, decision coverage is listed as condition elements.

import sltest.plugins.coverage.CoverageMetrics

cmet = CoverageMetrics('Decision',true);

4. Set the coverage report properties. This example produces a file R13Coverage.xml in
the current working folder. Ensure your working folder has write permissions.

import sltest.plugins.coverage.ModelCoverageReport
import matlab.unittest.plugins.codecoverage.CoberturaFormat

rptfile = 'R13Coverage.xml';
rpt = CoberturaFormat(rptfile)

rpt =
 CoberturaFormat with no properties.

5. Create a model coverage plugin. The plugin collects the coverage metrics and produces
the Cobertura format report.

import sltest.plugins.ModelCoveragePlugin

mcp = ModelCoveragePlugin('Collecting',cmet,'Producing',rpt)

7 Test Manager Test Cases

7-132

mcp =
 ModelCoveragePlugin with properties:

 RecordModelReferenceCoverage: '<default>'
 MetricsSettings: [1x1 sltest.plugins.coverage.CoverageMetrics]

6. Add the coverage plugin to the test runner.

addPlugin(trun,mcp)

% Turn off command line warnings:
warning off Stateflow:cdr:VerifyDangerousComparison
warning off Stateflow:Runtime:TestVerificationFailed

7. Run the test.

APResult = run(trun,apsuite)

APResult =
 TestResult with properties:

 Name: 'AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test'
 Passed: 0
 Failed: 1
 Incomplete: 0
 Duration: 7.7443
 Details: [1x1 struct]

Totals:
 0 Passed, 1 Failed, 0 Incomplete.
 7.7443 seconds testing time.

8. Reenable warnings.

warning on Stateflow:cdr:VerifyDangerousComparison
warning on Stateflow:Runtime:TestVerificationFailed

See Also
TestRunner | TestSuite | matlab.unittest.plugins.TAPPlugin |
matlab.unittest.plugins.TestReportPlugin |

 See Also

7-133

sltest.plugins.ModelCoveragePlugin |
sltest.plugins.TestManagerResultsPlugin

More About
• “Test Models Using MATLAB Unit Test” on page 7-125

7 Test Manager Test Cases

7-134

Filter Test Execution and Results
In this section...
“Add Tags” on page 7-135
“Filter Tests and Results” on page 7-135
“Run Filtered Tests” on page 7-135

You can run a subset of tests or view a subset of test results by filtering test tags. Tags are
a property of the test case, test suite, or test file.

Add Tags
Add comma-separated tags to the Tags section in the Test Browser. Tags cannot contain
spaces; spaces are corrected to commas.

Filter Tests and Results
In the text box at the top of the Test Browser or Results and Artifacts pane, filter tests
by entering tags: id1, id2, ... where id1 and id2 are example test tags. Enter
multiple tags separated by commas to return tests containing any tag in the list.

Run Filtered Tests
To run a subset of tests

 Filter Test Execution and Results

7-135

1 Filter the tests using tags.
2 In the toolstrip, click the down arrow below Run and select Run Filtered.

7 Test Manager Test Cases

7-136

Test Manager Results and Reports

• “View Test Case Results” on page 8-2
• “Export Test Results and Generate Reports” on page 8-9
• “Customize Test Reports” on page 8-15
• “Append Code to a Test Report” on page 8-20
• “Results Sections” on page 8-23

8

View Test Case Results

In this section...
“View Results Summary” on page 8-2
“Visualize Test Case Simulation Output and Criteria” on page 8-4

After a test case has finished running in the Test Manager, the test case result becomes
available in the Results and Artifacts pane. Test results are organized in the same
hierarchy as the test file, test suite, and test cases that were run from the Test Browser
pane. In addition, the Results and Artifacts pane shows the criteria results and
simulation output, if applicable to the test case.

View Results Summary
The test case results tab gives a high-level summary and other information about an
individual test case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

2 Double-click a test case result.

8 Test Manager Results and Reports

8-2

A tab opens containing the test case results information.

 View Test Case Results

8-3

Visualize Test Case Simulation Output and Criteria
You can view signal data from simulation output or comparisons of signal data used in
baseline or equivalence criteria.

To view simulation output from a test case:

8 Test Manager Results and Reports

8-4

1 Select the Results and Artifacts pane.
2 Expand the Sim Output section of the test case result.
3 Select the check box of signals you want to plot.

The Visualize tab appears and plots the signals.

 View Test Case Results

8-5

To view equivalence or baseline criteria comparisons:

1 Select the Results and Artifacts pane.
2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of

the test case result.
3 Select the option button of the signal comparison you want to plot.

8 Test Manager Results and Reports

8-6

The Comparison tab appears and plots the signal comparison.

 View Test Case Results

8-7

To see an example of creating a test case and viewing the results, see “Compare Model
Output To Baseline Data” on page 7-9.

Note When you run a test multiple times, by default the new signals are added to the plot
from previous test runs. To instead overwrite the plots with only the new results, right-
click Sim Output and select Plot Signals > Overwrite.

8 Test Manager Results and Reports

8-8

Export Test Results and Generate Reports
In this section...
“Export Results” on page 8-9
“Create a Test Results Report” on page 8-10
“Save Reporting Options with a Test File” on page 8-10
“Generate Reports Using Templates” on page 8-11
“Generating a Test Results Report” on page 8-13

Once you have run test cases and generated test results, you can export results and
generate reports. Test case results appear in the Results and Artifacts pane.

Export Results
Test results are saved separately from the test file. To save results, select the result in the
Results and Artifacts pane, and click Export on the toolstrip.

• Select complete result sets to export to a MATLAB data export file (.mldatx).

• Select criteria comparisons or simulation output to export signal data to the base
workspace or to a MAT-file.

 Export Test Results and Generate Reports

8-9

Create a Test Results Report
Result reports contain report overview information, the test environment, results
summaries with test outcomes, comparison criteria plots, and simulation output plots. You
can customize the information included in the report, and you can save the report in three
different file formats: ZIP (HTML), DOCX, and PDF.

1 In the Results and Artifacts pane, select results for a test file, test suite, or test
case.

Note You can create a report from multiple result sets, but you cannot create a
report from multiple test files, test suites, or test cases within results sets.

2 From the toolstrip, click Report.
3 Select the options to specify report contents.
4 Set File Format to the output format you want.
5 Click Create.

Save Reporting Options with a Test File
You can generate a report every time you run a test case in a test file, using the same
report settings each time. To generate a report each time you run the test, set options
under Test File Options. These settings are saved with the test file.

1 In the Test Browser pane, select the test file whose report options you want to set.
2 Under Test File Options, select Generate report after execution. The section

expands, displaying the same report options you can set using the dialog box.

8 Test Manager Results and Reports

8-10

3 Set the options. To include figures generated by callbacks or custom criteria, select
MATLAB figures. For more information, see “Create, Store, and Open MATLAB
Figures” on page 7-122.

4 Store the settings with your test file. Save the test file.
5 If you want to generate a report using these settings, select the test file and run the

test.

Generate Reports Using Templates
Microsoft Word Format

If you have a MATLAB Report Generator license, you can create reports from a Microsoft
Word template. The report can be a Microsoft Word or PDF document.

The report generator in Simulink Test fills information into rich text content controls in
your Microsoft Word template document. For more information on how to use rich text
content controls or customize part templates, see the MATLAB Report Generator
documentation, such as “Add Holes in a Microsoft Word Template” (MATLAB Report
Generator).

For a sample template, go to the path:

cd(matlabroot);
cd('help\toolbox\sltest\examples');

In the examples folder, open the file Template.dotx.

In the Microsoft Word template, you can add rich text content controls. Each Simulink
Test report section can be inserted into the rich text content controls. The control names
are:

• ChapterTitle — report title
• ChapterTestPlatform — version of MATLAB used to execute tests
• ChapterTOC — test results table of contents
• ChapterBody — test results

For example, the chapter title rich text content control appears in the Microsoft Word
template as:

 Export Test Results and Generate Reports

8-11

To change the control name, right-click the rich text content control and select
Properties. Specify the control name, ChapterTitle or other name, in the Title and
Tag field.

To generate a report from the Test Manager using a Microsoft Word template:

1 In the Test Manager, select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case in the Results and Artifacts

pane.
3 From the toolstrip, click Report.
4 Select the report options.
5 Select DOCX or PDF for the File Format.
6 Specify the full path and file name of your Microsoft Word template.
7 Click Create.

8 Test Manager Results and Reports

8-12

PDF or HTML Formats

If you have a MATLAB Report Generator license, you can create reports from a PDF or
HTML template, using a PDFTX or HTMTX file. To generate a report from the Test
Manager using a PDF or HTML template:

1 In the Test Manager, select the Results and Artifacts pane.
2 Select results for a test file, test suite, or test case in the Results and Artifacts

pane.
3 From the toolstrip, click Report.
4 Select the report options.
5 Select ZIP or PDF for the File Format. Selecting ZIP generates an HTML report.
6 Specify the full path and file name of your template. For PDF, use a PDFTX file. For

HTML, use an HTMTX file. For more information on creating templates, see
“Templates” (MATLAB Report Generator).

7 Click Create.

Generating a Test Results Report
Report test results for a baseline test.

This example shows how to generate a test results report from the Test Manager using a
baseline test case. The model used for this example is
sltestTestManagerReportsExample. Switch to a directory with write permissions.

Load and run the test file

Load and run the test file programmatically using the Test Manager. The test file contains
a baseline test case that fails when it is run. The baseline criteria specified in the baseline
test case does not match the model simulation, which makes the test case fail.

exampleFile = fullfile(matlabroot, ...
 'toolbox', 'simulinktest', 'simulinktestdemos', ...
 'sltestTestManagerReportsTestSuite.mldatx');
sltest.testmanager.load(exampleFile);
baselineObj = sltest.testmanager.run;

 Export Test Results and Generate Reports

8-13

Generate the report

Generate a report of the test case results using the results set object. The report is saved
as a ZIP and will show all test results. The report opens when it is completed.

sltest.testmanager.report(baselineObj,'baselineReport.zip',...
 'IncludeTestResults',0, 'IncludeComparisonSignalPlots', true);

View the report when it is finished generating. Notice that the overall baseline test case
fails. The signals in baseline criteria do not match, which causes the test failure. You can
view the signal comparison plots in the report to verify the failure.

sltest.testmanager.clear;
sltest.testmanager.clearResults;

See Also

Related Examples
• “Templates” (MATLAB Report Generator)
• “Create, Store, and Open MATLAB Figures” on page 7-122

8 Test Manager Results and Reports

8-14

Customize Test Reports
In this section...
“Inherit the Report Class” on page 8-15
“Method Hierarchy” on page 8-15
“Modify the Class” on page 8-17
“Generate a Report Using the Custom Class” on page 8-19

You can choose how to format and aggregate test results by customizing reports. Use the
sltest.testmanager.TestResultReport class to create a subclass and then use the
properties and methods to customize how the Test Manager generates the results report.
You can change font styles, add plots, organize results into tables, include model images,
and more. Using the custom class, requires a MATLAB Report Generator license.

Inherit the Report Class
To customize the generated report, you must inherit from the
sltest.testmanager.TestResultReport class. After you inherit from the class, you
can modify the properties and methods. To inherit the class, add the class definition
section to a new or existing MATLAB script. The subclass is your custom class name, and
the superclass that you inherit from is sltest.testmanager.TestResultReport. For
more information about creating subclasses, see “Design Subclass Constructors”
(MATLAB). Then, add code to the inherited class or methods to create your
customizations.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 %
 % Report customization code here
 %
end

Method Hierarchy
When you create the subclass, the derived class inherits methods from the
sltest.testmanager.TestResultReport class. The body of the report is separated
into three main groups: the result set block, the test suite result block, and the test case
result block.

 Customize Test Reports

8-15

The result set block contains the result set table, the coverage table, and links to the table
of contents.

The test suite result block contains the test suite results table, the coverage table,
requirements links, and links to the table of contents.

The test case result block contains the test case and test iterations results table, the
coverage table, requirements links, signal output plots, comparison plots, test case
settings, and links to the table of contents.

8 Test Manager Results and Reports

8-16

Modify the Class
To insert your own report content or change the layout of the generated report, modify
the inherited class methods. For general information about modifying methods, see
“Modify Inherited Methods” (MATLAB).

A simple modification to the generated report could be to add some text to the title page.
The method used here is addTitlePage.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 methods
 function this = CustomReport(resultObjects, reportFilePath)
 this@sltest.testmanager.TestResultReport(resultObjects,...
 reportFilePath);
 end
 end

 methods(Access=protected)
 function addTitlePage(obj)
 import mlreportgen.dom.*;

 % Add a custom message
 label = Text('Some custom content can be added here');
 append(obj.TitlePart,label);

 % Call the superclass method to get the default behavior
 addTitlePage@sltest.testmanager.TestResultReport(obj);
 end
 end
end

Click here for a code file of this example.

A more complex modification of the generated report is to include a snapshot of the
model that was tested.
% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
 methods
 function this = CustomReport(resultObjects,reportFilePath)
 this@sltest.testmanager.TestResultReport(resultObjects,reportFilePath);
 end
 end

 methods(Access=protected)
 % Method to customize test case/iteration result section in the report

 Customize Test Reports

8-17

 function docPart = genTestCaseResultBlock(obj,result)
 % result: A structure containing test case or iteration result
 import mlreportgen.dom.*;

 % Call the superclass method to get the default behavior
 docPart = genTestCaseResultBlock@sltest.testmanager.TestResultReport(...
 obj,result);

 % Get the test case result data for putting in the report
 tcrObj = result.Data;

 % Insert model screenshot at the test case result level
 if isa(tcrObj, 'sltest.testmanager.TestCaseResult')

 % Initialize model name
 modelName = '';

 % Check in the test case result if it has model information. If
 % not, it means there were iterations in the test case or a
 % model was not used.
 testSimMetaData = tcrObj.SimulationMetaData;

 if (~isempty(testSimMetaData))
 modelName = testSimMetaData.modelName;
 end

 % Get iteration results
 iterResults = getIterationResults(tcrObj);

 % Get the model name in case test case had iterations
 if (~isempty(iterResults))
 modelName = iterResults(1).SimulationMetaData.modelName;
 end

 % Insert model snapshot. This will not work for harnesses. With
 % minimal changes we can also open the harness used for
 % testing.
 if (~isempty(modelName))
 try
 open_system(modelName);
 outputFileName = [tempdir, modelName, '.png'];
 if exist(outputFileName,'file')
 delete(outputFileName);
 end
 print(outputFileName, '-s', '-dpng');
 para = sltest.testmanager.ReportUtility.genImageParagraph(...
 outputFileName,...
 '5.2in','3.7in');
 append(docPart,para);
 catch
 end
 end
 end
 end
 end
end

Click here for a code file of this example.

8 Test Manager Results and Reports

8-18

Generate a Report Using the Custom Class
After you customize the class and methods, use the sltest.testmanager.report to
generate the report. You must use the 'CustomReportClass' name-value pair for the
custom class, specified as a string. For example:

% Generate the result set from imported data
result = sltest.testmanager.importResults('demoResults.mldatx');

% Specify the report file name and path
filePath = 'testreport.zip';

% Generate the report using the custom class
sltest.testmanager.report(result,filePath, ...
 'Author','MathWorks',...
 'Title','Test',...
 'IncludeMLVersion',true,...
 'IncludeTestResults',int32(0),...
 'CustomReportClass','CustomReport',...
 'LaunchReport', true);

Alternatively, you can create your custom report using the Test Manager report dialog
box. Select a test result, click the Report button on the toolstrip, and specify the custom
report class in the Create Test Result Report dialog box. For the Test Manager to use the
custom report class, the class must be on the MATLAB path.

See Also
sltest.testmanager.TestResultReport | sltest.testmanager.report

Related Examples
• “Design Subclass Constructors” (MATLAB)

 See Also

8-19

Append Code to a Test Report
This example shows how to use a customization class to print integrated code in a test
results report. If you test models that include handwritten code, you can print the code to
a report to be reviewed with the test results.

The cruise control model integrates handwritten C code using an S-Function builder
block. The C code is a utility function that disregards simultaneous pressing of two
buttons: Accel/Res and Coast/Set.

This example requires Simulink® Report Generator™ and Microsoft® Windows.

Example Files

Before running this example, add the example folders to the path and set the filenames.

addpath(fullfile(matlabroot,'examples','simulinktest'));
addpath(fullfile(matlabroot,'examples','simulinktest','main'));
rptCustom = 'textAppendReport.m';
resultsFile = 'DoublePressSfcnSimTestResults';
filePath = fullfile(tempdir,'textAppendedReport.zip');

Report Customization Class

The report customization class textAppendReport.m appends the S-Function code to
the end of the report body.

open(rptCustom)

Load the Results and Create the Report

1. Load the test results file.

result = sltest.testmanager.importResults(resultsFile);

2. Create the test report using the customization.

sltest.testmanager.report(result,filePath,'CustomReportClass','textAppendReport',...
 'IncludeTestResults',0)

3. The report appends the S-Function wrapper code:

8 Test Manager Results and Reports

8-20

 Append Code to a Test Report

8-21

For more information on report customization, see “Customize Test Reports” on page 8-
15.

rmpath(fullfile(matlabroot,'examples','simulinktest'));
rmpath(fullfile(matlabroot,'examples','simulinktest','main'));
sltest.testmanager.clearResults;
sltest.testmanager.close;

8 Test Manager Results and Reports

8-22

Results Sections
In this section...
“Summary” on page 8-24
“Test Requirements” on page 8-24
“Iteration Settings” on page 8-25
“Errors” on page 8-25
“Logs” on page 8-25
“Description” on page 8-25
“Parameter Overrides” on page 8-25
“Coverage Results” on page 8-25

Double-click a test case results in the Results and Artifacts pane to open a results tab
and view the test case result sections. A baseline test case result is shown as an example.

 Results Sections

8-23

Summary
The Summary section includes the basic test information and the test outcome. For more
information about the simulation, toggle the Simulation Metadata arrow to expand the
section.

Test Requirements
A list of test requirements linked to the test case. See “Requirements” on page 7-97 for
more information on linking requirements to test cases.

8 Test Manager Results and Reports

8-24

Iteration Settings
If you are using iterations to run test cases, then this section appears in the results. For
more information about test iterations, see “Test Iterations” on page 7-71.

Errors
This section displays simulation errors captured from the Simulink Diagnostic Viewer.
Errors from incorrect information defined in the test case and callback scripts are also
shown here.

Logs
This section displays simulation warnings captured from the Simulink Diagnostic Viewer.

Description
You can include notes about the test results here. These notes are saved with the results.

Parameter Overrides
A list of parameter overrides specified in the test case under Parameter Overrides. If
parameter overrides are not specified, then this section is not shown in the results
summary.

Coverage Results
If you collect coverage in your test, then the coverage results appear in this section.
Coverage results are aggregated at the test file, test suite, and test file level. For more
information about coverage, see “Collect Coverage in Tests” on page 7-83.

 Results Sections

8-25

Real-Time Testing

• “Test Models in Real Time” on page 9-2
• “Reuse Desktop Test Cases for Real-Time Testing” on page 9-13

9

Test Models in Real Time
In this section...
“Overall Workflow” on page 9-2
“Real-Time Testing Considerations” on page 9-3
“Complete Basic Model Testing” on page 9-3
“Set up the Target Computer” on page 9-3
“Configure the Model or Test Harness” on page 9-4
“Add Test Cases for Real-Time Testing” on page 9-6
“Assess Real-Time Execution Using verify Statements” on page 9-11

You can test your system in environments that resemble your application. You begin with
model simulation on a development computer, then use software-in-the-loop (SIL) and
processor-in-the-loop (PIL) simulations. Real-time testing executes an application on a
standalone target computer that can connect to a physical system. Real-time testing can
include effects of timing, signal interfaces, system response, and production hardware.

Real-time testing includes:

• Rapid prototyping, which tests a system on a standalone target connected to plant
hardware. You verify the real-time tests against requirements and model results. Using
rapid prototyping results, you can change your model and update your requirements,
after which you retest on the standalone target.

• Hardware-in-the-loop (HIL), which tests a system that has passed several stages of
verification, typically SIL and PIL simulations.

Overall Workflow
This example workflow describes the major steps of creating and executing a real-time
test:

1 Create test cases that verify the model against requirements. Run the model
simulation tests and save the baseline data.

2 Set up the real-time target computer.
3 Create test harnesses for real-time testing, or reuse model simulation test harnesses.

In Test Sequence or Test Assessment blocks, verify statements assess the real-time

9 Real-Time Testing

9-2

execution. In the test harnesses, use target and host scopes to display signals during
execution.

4 In the Test Manager, create real-time test cases.
5 For the real-time test cases, configure target settings, inputs, callbacks, and

iterations. Add baseline or equivalence criteria.
6 Execute the real-time tests.
7 Analyze the results in the Test Manager. Report the results.

Real-Time Testing Considerations
• Baseline or equivalence comparisons can fail because of missing data or time-shifted

data from the real-time target computer. When investigating real-time test failures,
look for time shifts or missing data points.

• You cannot override the real-time execution sample time for applications built from
models containing a Test Sequence block. The code generated for the Test Sequence
block contains a hard-coded sample time. Overriding the target computer sample time
can produce unexpected results.

• Your target computer must have a file system to use verify statements and test case
logging.

Complete Basic Model Testing
Real-time testing often takes longer than comparative model testing, especially if you
execute a suite of real-time tests that cover several scenarios. Before executing real-time
tests, complete requirements-based testing using desktop simulation. Using the desktop
simulation results:

• Debug your model or make design changes that meet requirements.
• Debug your test sequence. Use the debugging features in the Test Sequence Editor.

See “Debug a Test Sequence” on page 3-69.
• Update your requirements and add corresponding test cases.

Set up the Target Computer
Real-time testing requires a standalone target computer. Simulink Test only supports
target computers running Simulink Real-Time. For more information, see:

 Test Models in Real Time

9-3

• “Development Computer Setup and Configuration” (Simulink Real-Time)
• “Troubleshooting in Simulink Real-Time” (Simulink Real-Time)

Configure the Model or Test Harness
Real-time applications require specific configuration parameters and signal properties.

Code Generation

A real-time test case requires a real-time system target file. In the model or harness
configuration parameters, in the Code Generation pane, set the System target file to
slrt.tlc to generate system target code.

If your model requires a different system target file, you can set the parameter using a
test case or test suite callback. After the real-time test executes, set the parameter to its
original setting with a cleanup callback. For example, this callback opens the model and
sets the system target file parameter to slrt.tlc for the model
sltestProjectorController.

open_system(fullfile(matlabroot,'toolbox','simulinktest',...
'simulinktestdemos','sltestProjectorController'));
set_param('sltestProjectorController','SystemTargetFile','slrt.tlc');

Data Import/Export Format

Models must use a data format other than dataset. To set the data format:

1 Open the configuration parameters.
2 Select the Data Import/Export pane.
3 Select the Format.

Log Signals from Real-Time Execution

To configure your signals of interest for real-time testing:

• Enable signal logging in the Configuration Parameters, in the Data Import/Export
pane.

• Connect signals to Scope blocks from the Simulink Real-Time block library. Set the
Scope type property to File.

9 Real-Time Testing

9-4

• Name each signal of interest using the signal properties. Unnamed signals can be
assigned a default name which does not match the name of the baseline or
equivalence signal.

In this example test harness, the logged signals:

• Have explicit names.
• Use file scopes to return signal data to the Test Manager.
• Use target scopes to display data on the target computer.

View Signals During Real-Time Execution

To display signals on the target computer during real-time execution, add target scopes to
your test harness. To display signals in the Simulink Real-Time Explorer, add host scopes.
This test harness includes both target and host scopes for signal visualization. See Scope.

 Test Models in Real Time

9-5

Add Test Cases for Real-Time Testing
Use the Test Manager to create real-time test cases. In the toolstrip, click New > Real-
Time Test.

Test Type

You can select a baseline, equivalence, or simulation real-time test. For simulation test
types, verify statements serve as pass/fail criteria in the test results. For equivalence
and baseline test types, the equivalence or baseline criteria also serve as pass/fail
criteria.

• Baseline — Compares the signal data returned from the target computer to the
baseline in the test case. To compare a real-time execution result to a model
simulation result, add the model baseline result to the real-time test case and apply
optional tolerances to the signals.

• Equivalence — Compares signal data from a simulation and a real-time test, or two
real-time tests. To run a real-time test on the target computer, then compare results to
a model simulation:

• Select Simulation 1 on target.

9 Real-Time Testing

9-6

• Clear Simulation 2 on target.

The test case displays two simulation sections, Simulation 1 and Simulation 2.

Comparing two real-time tests is similar, except that you select both simulations on
target. In the Equivalence Criteria section, you can capture logged signals from the
simulation and apply tolerances for pass/fail analysis.

• Simulation: Assesses the test result using only verify statements and real-time
execution. If no verify statements fail, and the real-time test executes, the test case
passes.

Load Application From

Using this option, specify how you want to load the real-time application. The real-time
application is built from your model or test harness. You can load the application from:

• Model — Choose Model if you are running the real-time test for the first time, or your
model changed since the last real-time execution. Model typically takes the longest
because it includes model build and download. Model loads the application from the
model, builds the real-time application, downloads it to the target computer, and
executes it on the target computer.

• Target Application — Choose Target Application to send the target application
from the host to a target computer, and execute the application. Target
Application can be useful if you want to load an already-built application on
multiple targets.

• Target Computer — This option executes an application that is already loaded on the
real-time target computer. You can update the parameters in the test case and execute
using Target Computer.

This table summarizes which steps and callbacks execute for each option.

Test Case
Execution Step
(first to last)

Load Application From
Model Target Application Target Computer

Executes pre-load
callback

Yes Yes Yes

Loads Simulink
model

Yes No No

 Test Models in Real Time

9-7

Test Case
Execution Step
(first to last)

Load Application From
Model Target Application Target Computer

Executes post-load
callback

Yes No No

Sets Signal Builder
group

Yes No No

Builds real-time
application from
model

Yes No No

Downloads real-time
application to target
computer

Yes Yes No

Sets runtime
parameters

Yes Yes Yes

Executes pre-start
real-time callback

Yes Yes Yes

Executes real-time
application

Yes Yes Yes

Executes cleanup
callback

Yes Yes Yes

Model

Select the model from which to generate the real-time application.

Test Harness

If you use a test harness to generate the real-time application, select the test harness.

Simulation Settings Overrides

For real-time tests, you can override the simulation stop time, which can be useful in
debugging a real-time test failure. Consider a 60-second test that returns a verify
statement failure at 15 seconds due to a bug in the model. After debugging your model,
you execute the real-time test to verify the fix. You can override the stop time to terminate
the execution at 20 seconds, which reduces the time it takes to verify the fix.

9 Real-Time Testing

9-8

Callbacks

Real-time tests offer a Pre-start real-time application callback which executes
commands just before the application executes on the target computer. Real-time test
callbacks execute in a sequence along with the model load, build, download, and execute
steps. Callbacks and step execution depends on how the test case loads the application.

Sequence
Load application
from:

Model

Load application
from:

Target application

Load application
from:

Target computer
Executes first Preload callback Preload callback Preload callback

 Post-load callback — —
 Pre-start real-time

callback
Pre-start real-time
callback

Pre-start real-time
callback

Executes last Cleanup callback Cleanup callback Cleanup callback

Iterations

You can execute iterations in real-time tests. Iterations are convenient for executing real-
time tests that sweep through parameter values or Signal Builder groups. Results appear
grouped by iteration. For more information on setting up iterations, see “Test Iterations”
on page 7-71. You can create:

• Tabled iterations from a parameter set — Define several parameter sets in the
Parameter Overrides section of the test case. Under Iterations > Table Iterations,
click Auto Generate and select Parameter Set.

• Tabled iterations from signal builder groups — If your model or test harness uses a
signal builder input, under Iterations > Table Iterations, click Auto Generate and
select Signal Builder Group. If you use a signal builder group, load the application
from the model.

• Scripted iterations — Use scripts to iterate using model variables or parameters. For
example, in the model sltestRealTimeOscillatorTestExample, the
SettlingTest harness uses a Test Sequence block to create a square wave test
signal for the oscillator system using the parameter frequency.

 Test Models in Real Time

9-9

9 Real-Time Testing

9-10

In the test file SettlingTestCases, the real-time test scripted iterations cover a
frequency sweep from 5 Hz to 35 Hz. The script iterates the value of frequency in
the Test Sequence block.

%% Iterate over frequencies to determine best oscillator settings

% Create parameter sets
freq = 5.0:1.0:35.0;

for i_iter = 1:length(freq)
 % Create iteration object
 testItr = sltestiteration();

 % Set parameters
 setVariable(testItr,'Name','frequency','Source','Test Sequence',...
 'Value',freq(i_iter));

 % Register iteration
 addIteration(sltest_testCase, testItr);
end

Assess Real-Time Execution Using verify Statements
In addition to baseline and equivalence signal comparisons, you can assess real-time test
execution using verify statements. A verify statement assesses a logical expression
and returns results to the Test Manager. Use verify inside a Test Sequence or Test
Assessment block. See “Assess Model Simulation Using verify Statements” on page 3-15.

 Test Models in Real Time

9-11

See Also

Related Examples
• “Test Real-Time Application” (Simulink Real-Time)

9 Real-Time Testing

9-12

Reuse Desktop Test Cases for Real-Time Testing
Convert Desktop Test Cases to Real-Time
In the Test Manager, you can reuse test cases for real-time testing by converting desktop
test cases to real-time test cases. For convenience, data can be stored externally so that
each test case accesses common inputs and baseline data. The overall workflow is as
follows:

1 Create a baseline, equivalence, or simulation test case with external inputs. For
baseline tests, add baseline data from external files.

2 In the Test Manager, select the test case in the Test Browser.
3 Copy the test case. Right-click the test case and select Copy.
4 Paste the new test case into a test suite.
5 Rename the new test case.
6 Right-click the new test case, and select Convert to > Real-Time Test. For

equivalence tests, select which simulation (simulation 1 or simulation 2) to run in real
time.

7 Select the Target Computer and Load Application From options.
8 Ensure that the model settings are compatible with real-time test execution. For more

information, see “Development Computer Setup and Configuration” (Simulink Real-
Time).

Use External Data for Real-Time Tests
You can simplify test input data management by defining the input data in an external
MAT or Excel file. Map the data to root inports in your model or test harness for desktop
simulation. When you convert the desktop simulation test case into a real-time test, the
test case uses the same inport mapping.

Using external data depends on how your test case loads the real-time application:

Load Real-Time Application from Model

If you are using external data for a real-time test, loading the real-time application from
the model gives you the option of using an Excel file, MAT file, or CSV file. The external
data is built into the application, and you can rerun the application from the target
application or target computer.

In the System Under Test section, set the application to load from Model. In the Inputs
section of the test case, click Add, and select an Excel file, MAT file, or CSV file. Map the

 Reuse Desktop Test Cases for Real-Time Testing

9-13

data to your model inports. For more information on input mapping, see “Run Tests Using
External Data” on page 7-25.

Load Real-Time Application from Target Application or Target Computer

After running the test from the model, you can run the test from the target application or
target computer without recompiling. The application uses the input mapping from when
the test ran from the model.

You can map external data to a test case loaded from the target application or target
computer, without first running from the model. The external data must be in a MAT file,
in the same format used if the test is loaded from the model. In the System Under Test
section, select to load the application from the Target Application or Target
Computer. In the Inputs section, click Add and select a MAT file. The Input string is not
editable.

Example
This example shows a basic desktop test case reuse workflow using external input data
defined in an Excel file. You run the baseline test case on the desktop, update the baseline
data, convert a copy of the test case to a real-time test, then run the test case on a target
computer. This example runs only on Windows systems.

1 Open the test file.

tf = sltest.testmanager.TestFile(fullfile(matlabroot,'examples',...
'simulinktest','sltestTestCaseRealTimeReuseExample.mldatx'));
sltest.testmanager.load(tf.Name);
sltest.testmanager.view;

The test file runs a transmission shift controller algorithm through four iterations,
each corresponding to a different test scenario: passing, gradual acceleration, hard
braking, and coasting. There is baseline data associated with each scenario for the
signals vehicle speed and output torque.

9 Real-Time Testing

9-14

2 Run the baseline test.
3 Under the Baseline Criteria result, select output torque under the Passing result

to view the comparison. The Passing result fails due to transient signals that fall
outside the relative tolerance.

4 Assume that these transient signals are not significant, and update the baseline data:

1 Click Next Failure. The first failure region is bounded by data cursors.
2 Click Update Baseline + Update selected signal region, and confirm that you

want to overwrite the data.

 Reuse Desktop Test Cases for Real-Time Testing

9-15

3 Repeat this process for the other two failure regions.
5 Copy and convert the baseline test case to a real-time test:

1 In the Test Browser, right-click Baseline Test and select Copy.
2 Paste the new test case under the test suite.
3 Rename the new tests case RT Baseline Test.
4 Right-click RT Baseline Test and select Convert to > Real-Time Test.

6 Run the real-time test case:

1 Set the Target Computer.
2 Set the system under test to load from Model.

3 Run the RT Baseline Test test case.
7 In this example, several of the scenarios fail due to timing impacts on the data

output. For example, in the HardBrake iteration, the vehicle speed output falls
outside the relative tolerance after the brake is applied. To resolve this failure, you
could:

• Increase the relative tolerance for the real-time test.
• Create a separate set of baseline data for the real-time test.

9 Real-Time Testing

9-16

See Also

Related Examples
• “Test Real-Time Application” (Simulink Real-Time)

 See Also

9-17

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 10-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 10-8
• “Perform Functional Testing and Analyze Test Coverage” on page 10-11
• “Analyze Code and Test Software-in-the-Loop” on page 10-15

10

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see
the extent to which your requirements are verified. You can link a requirement to
elements that help verify it, such as test cases in the Test Manager, verify statements in
a Test Sequence block, or Model Verification blocks in a model. When you run tests, a
pass/fail summary appears in your requirements set.

This example demonstrates a common requirements-based testing workflow for a cruise
control model. You start with a requirements set, a model, and a test case. You add
traceability between the tests and the safety requirements. You run the test, summarize
the verification status, and report the results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking
event has occurred

• That the cruise control system transitions to disengaged from engaged when the
current vehicle speed is outside the range of 20 mph to 90 mph.

10 Verification and Validation

10-2

Display the Requirements and Test Case
1 Create a copy of the project in a working folder. The project contains data,

documents, models, and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx
model.

3 Display the requirements. Click the icon in the lower-right corner of the model
canvas, and select Requirements. The requirements appear below the model
canvas.

4 Expand the requirements information to include verification and implementation
status. Right-click a requirement and select Verification Status and
Implementation Status.

 Test Model Against Requirements and Report Results

10-3

5 Open the Simulink Test file slReqTests.mldatx from the tests folder. The test file
opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Requirements Browser, select requirement S 3.1.
2 In the Test Manager, expand the test file and select the Safety Tests test case.

Expand the Requirements section.
3 In the Requirements section, select Add > Link to Selected Requirement.

The requirements browser displays the verification-type link.

10 Verification and Validation

10-4

4 Also add a link for item S 3.4.

Run the Test
1 The test case uses a test harness SafetyTest_Harness1. In the test harness, a test

sequence sets the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It
includes the verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle
speed until it exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

2 Run the test case. In the Test Manager toolstrip, click Run.
3 When the test finishes, expand the Verify Statements results. The Test Manager

results show that both assessments pass, and the plot shows the detailed results of
each verify statement.

 Test Model Against Requirements and Report Results

10-5

4 In the Requirements Browser, right-click a requirement and select Refresh
Verification Status to show the passing test results for each requirement.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create
Report.

10 Verification and Validation

10-6

b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

d Enter a file name and select a location for the report.
e Click Create.

2 Review the report.

a In the Test Case Requirements section, click the link to trace to the
requirements document.

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

See Also

Related Examples
• “Link to Requirements” on page 1-2
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Customize Requirements Traceability Report for Model” (Simulink Requirements)

 See Also

10-7

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

10 Verification and Validation

10-8

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the model window, select Analysis > Model Advisor > Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the

System Hierarchy.
5 Check your model for MAAB style guideline violations using Simulink Check.

a In the left pane, in the By Product > Simulink Check > Modeling Standards
> MathWorks Automotive Advisory Board Checks folder, select:

• Check for indexing in blocks
• Check for prohibited blocks in discrete controllers
• Check model diagnostic parameters

b Right-click the MathWorks Automotive Advisory Board Checks node, and
then select Run Selected Checks.

c Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

d In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

e To verify that your model passes, rerun the check. Repeat steps c and d, if
necessary, to reach compliance.

f To generate a results report of the Simulink Check checks, select the
MathWorks Automotive Advisory Board Checks node, and then, in the right
pane click Generate Report....

 Analyze a Model for Standards Compliance and Design Errors

10-9

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection.

2 In the right pane, click Run Selected Checks.
3 After the analysis is complete, expand the Design Error Detection folder, then

select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog

box provides tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.

c Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

10 Verification and Validation

10-10

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model iteratively. Coverage measurement reflects the extent to which these tests have
fully exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case
Generation
This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,
analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

 Perform Functional Testing and Analyze Test Coverage

10-11

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results” on
page 10-2. At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests:

• That the system disengages when the brake pedal is pressed
• That the system disengages when the speed exceeds a limit

Some test sequence steps are linked to a requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Test Manager, enable coverage collection for the test case.

a Open the Test Manager. In the Simulink menu, click Analysis > Test Manager.
b In the Test Browser, click the slReqTests test file.
c Expand Coverage Settings.
d Under Coverage to Collect, select Record coverage for referenced models.

You specify a coverage filter to use for coverage analysis by using the Coverage
filter filename field. The default setting honors the model configuration
parameter settings. Leaving the Coverage filter filename field empty attaches
no coverage filter.

e Under Coverage Metrics, select Decision, Condition, and MCDC.

10 Verification and Validation

10-12

2 Run the test. On the Test Manager toolstrip, click Run.
3 When the test finishes, in the Test Manager, navigate to the test case. The aggregated

coverage results show that the example model achieves 50% decision coverage, 41%
condition coverage, and 25% MCDC coverage.

 Perform Functional Testing and Analyze Test Coverage

10-13

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
Select the test case in the Results and Artifacts and open the aggregated coverage
results section.

2 Select the test results from the previous section and then click Add Tests for
Missing Coverage.

The Add Tests for Missing Coverage options open.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier.
5 Run the updated test suite. On the Test Manager toolstrip, click Run. The test results

include coverage for the combined test case inputs, achieving increased model
coverage.

See Also

Related Examples
• “Link to Requirements” on page 1-2
• “Assess Model Simulation Using verify Statements” on page 3-15
• “Compare Model Output To Baseline Data” on page 7-9
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model”

10 Verification and Validation

10-14

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the project.

 Analyze Code and Test Software-in-the-Loop

10-15

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.

10 Verification and Validation

10-16

3 Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

4 Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

 Analyze Code and Test Software-in-the-Loop

10-17

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Guidelines for MISRA C:2012

advisor checks.

3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until

the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.

10 Verification and Validation

10-18

3 After the code is generated, right-click Compute target speed and select Polyspace >
Options.

4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

 Analyze Code and Test Software-in-the-Loop

10-19

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

10 Verification and Validation

10-20

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOnOff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.

This option allows you to choose a subset of MISRA rules in the Polyspace
configuration.

4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Rules & Code Metrics pane,

select the check box Check MISRA C:2012 and from the drop-down list, select

 Analyze Code and Test Software-in-the-Loop

10-21

single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are
applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

10 Verification and Validation

10-22

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug

Finder)
• “Test Two Simulations for Equivalence”
• “Export Test Results and Generate Reports” on page 8-9

 See Also

10-23

